Enhancing Current Density and Specific Capacitance through Tensile TEMPO, Bacterial Cellulose and Polypirrole Nanocomposites

Authors

  • Syukri Yunus Universitas Andalas, Indonesia
  • Muhammad Fajar Ruhud Manurung Universitas Andalas, Indonesia
  • Aulia Universitas Andalas, Indonesia
  • Yanuar Zulardiansyah Arief University Malaysia Serawak, Malaysia

DOI:

https://doi.org/10.25077/aijaset.v4i1.118

Abstract

The researchers developed a bio-composite film material that serves as a substitute for metal. The materials used are TEMPO ((2,2,6,6-tetramethylpiperidine-1-oxyl)), Bacterial Cellulose, and Polypyrrole (Ppy). This research aimed to increase the material's current density and specific capacitance values using the drawing method. Composite nanomaterials are made by oxidizing BC (Bacterial Cellulose) with TEMPO. The resulting TOBC (TEMPO Bacterial Cellulose) material was mixed with Ppy using the in situ method. The mixture is then drawn wet—measurement of current density and capacitance using Cyclic Voltammetry (CV) Testing. The current density and specific capacitance results increased by 542.74% and 754.79% after drawing the nanocomposite material. It is directly proportional to the effects of characteristic testing, which includes SEM, XRD, and FTIR. As a result of the withdrawal of the polypyrrole, it will be more evenly distributed in the composite material, absorbing and coating the nata de coco. The researchers concluded that when the TOBC/Ppy fibers are straighter and denser, they achieve higher current density and capacitance values.

Author Biographies

Syukri Yunus, Universitas Andalas, Indonesia

Department of Electrical Engineering, Engineering Faculty, Universitas Andalas, Indonesia

Muhammad Fajar Ruhud Manurung, Universitas Andalas, Indonesia

Department of Electrical Engineering, Engineering Faculty, Universitas Andalas, Indonesia

Aulia, Universitas Andalas, Indonesia

Department of Electrical Engineering, Engineering Faculty, Universitas Andalas, Indonesia

Yanuar Zulardiansyah Arief, University Malaysia Serawak, Malaysia

Departmen of Electrical and Electronic Engineering, University Malaysia Serawak, Malaysia

References

D. Xie, X. Li, T. Zhou, and Y. Feng, “Estimating the contribution of environmental variables to water quality in the postrestoration littoral zones of Taihu Lake using the APCS-MLR model,” Sci. Total Environ., vol. 857, 2023, doi: 10.1016/j.scitotenv.2022.159678.

S. Chen et al., “Deformation and Force Analysis of Wood-Piled Island Cofferdam Based on Equivalent Bending Stiffness Principle,” Buildings, vol. 12, no. 8, 2022, doi: 10.3390/buildings12081104.

M. Gut[1] R. Budiarto, Kebijakan energi: menuju sistem energi yang berkelanjutan. Samudra Biru, 2011.

B. Sitorus, “Diversifikasi sumber energi terbarukan melalui penggunaan air buangan dalam sel elektrokimia berbasis mikroba,” Jurnal Elkha, vol. 2, no. 1, 2010.

A. S. Samsudin, H. M. Lai, and M. I. N. Isa, “Biopolymer materials based carboxymethyl cellulose as a proton conducting biopolymer electrolyte for application in rechargeable proton battery,” Electrochim Acta, vol. 129, pp. 1–13, 2014.

A. S. Samsudin, W. M. Khairul, and M. I. N. Isa, “Characterization on the potential of carboxy methylcellulose for application as proton conducting biopolymer electrolytes,” J Non Cryst Solids, vol. 358, no. 8, pp. 1104–1112, 2012.

M. F. Shukur, Y. M. Yusof, S. M. M. Zawawi, H. A. Illias, and M. F. Z. Kadir, “Conductivity and transport studies of plasticized chitosan-based proton conducting biopolymer electrolytes,” Phys Scr, vol. 2013, no. T157, p. 014050, 2013.

S. Widyaningsih and H. Diastuti, “Pengaruh medium perendam terhadap sifat mekanik, morfologi, dan kinerja membran nata de coco,” Molekul, vol. 3, no. 1, pp. 28–33, 2008.

Y. Xue, L. Qi, Z. Lin, G. Yang, M. He, and J. Chen, “High-strength regenerated cellulose fiber reinforced with cellulose nanofibril and nanosilica,” Nanomaterials, vol. 11, no. 10, Oct. 2021, doi: 10.3390/nano11102664.

M. I. Maulana and H. Intan Syahbanu, “Sintesis dan Karakterisasi Material Konduktif Film Komposit Polipirol (Ppy)/SELULOSA BAKTERI,” Jurnal Kimia Khatulistiwa, vol. 6, no. 3.

J. Xu, Z. Gan, Y. Cheng, and J. Liu, “Discourse-Aware Neural Extractive Text Summarization,” Oct. 2019, [Online]. Available: http://arxiv.org/abs/1910.14142

K. Aswini, N. O. Gopal, N. Shobana, C. Sudalaimani, and S. Uthandi, “Insights into the properties of bacterial cellulose produced by Acetobacter senegalensis MA1 and uncovering the novel bioactive metabolites of its spent medium,” Biomass Convers Biorefin, pp. 1–16, 2022.

Y. Hu et al., “Enhanced metallicity boosts hydrogen evolution capability of dual-bimetallic Ni–Fe nitride nanoparticles,” Materials Today Physics, vol. 15, Dec. 2020, doi: 10.1016/j.mtphys.2020.100267.

D. Jang and S. Lee, “Correlating thermal conductivity of carbon fibers with mechanical and structural properties,” Journal of Industrial and Engineering Chemistry, vol. 89, pp. 115–118, Sep. 2020, doi: 10.1016/j.jiec.2020.06.026.

H. Wang, L. Bian, P. Zhou, J. Tang, and W. Tang, “Core–sheath structured bacterial cellulose/polypyrrole nanocomposites with excellent conductivity as supercapacitors,” J Mater Chem A Mater, vol. 1, no. 3, pp. 578–584, 2013.

H. K. Lin and W. C. Say, “Study of pyrite oxidation by cyclic voltammetric, impedance spectroscopic and potential step techniques,” J Appl Electrochem, vol. 29, pp. 987–994, 1999.

J. Sheng, T. Chen, R. Wang, Z. Zhang, F. Hua, and R. Yang, “Ultra-light cellulose nanofibril membrane for lithium-ion batteries,” J Memb Sci, vol. 595, p. 117550, 2020.

M. Maidawati, “Identifikasi Dan Analisis Senyawa Metabolit Sekunder Ekstrak Daun Sicerek (Clausena excavata),” Jurnal Penelitian Dan Pengkajian Ilmiah Eksakta, vol. 1, no. 2, pp. 98–104, 2022.

Y. Liu et al., “Microstructure and mechanical properties of laser metal deposited Ti6Al4V alloy with near equiaxed ? grain structure,” Journal of Materials Research and Technology, vol. 22, pp. 1935–1947, 2023.

S. W. SW Suciyati, P. P Manurung, J. Junaidi, S. Sembiring, and R. Situmeang, “Synthesis and Characterization of Nanocellulose from Cladophora sp.,” Ecology, Environment and Conservation, vol. 28, no. 2, pp. 521–527, 2022.

J. Ariksa et al., “Transparent and antimicrobial cellulose film from ginger nanofiber 1 2 Hairul Abral a).”

T. Lapailaka and R. Triandi, “Penentuan ukuran Kristal (crystallite size) lapisan tipis PZT dengan metode XRD melalui pendekatan persamaan Debye Scherrer,” Erudio Journal of Educational Innovation, vol. 1, no. 2, 2013.

H. E. G. Prasetya, “Membran Elektrolit Polimer Kitosan-Polyvinil Alkohol pada Direct Methanol Fuel Cell,” Journal of Research and Technology, vol. 8, no. 2, pp. 313–321, 2022.

H. Abral et al., “Anti-UV, antibacterial, strong, and high thermal resistant polyvinyl alcohol/Uncaria gambir extract biocomposite film,” Journal of Materials Research and Technology, vol. 17, pp. 2193–2202, Mar. 2022, doi: 10.1016/j.jmrt.2022.01.120.

H. Suryanto, A. S. Pahlevi, and U. Yanuhar, “Effect of bacterial cellulose reinforcement on morphology and tensile properties of starch-based biocomposite,” IOP Conf Ser Mater Sci Eng, vol. 1034, no. 1, p. 012167, Feb. 2021, doi: 10.1088/1757-899x/1034/1/012167.

I. Arlindia, “Analisis Pencemaran Danau Maninjau dari Nilai TDS dan Konduktivitas Listrik,” Jurnal Fisika Unand, vol. 4, no. 4, 2015.

M. D. Levi, C. Lopez, E. Vieil, and M. A. Vorotyntsev, “Influence of ionic size on the mechanism of electrochemical doping of polypyrrole films studied by cyclic voltammetry,” Electrochim Acta, vol. 42, no. 5, pp. 757–769, 1997.

D. S. Winatapura, W. A. Adi, P. Yustinus, and E. Sukirman, “Pengaruh Penambahan Ag2o terhadap Peningkatan Rapat Arus Kritis Superkonduktor Yba2cu3o7-x Hasil Proses Pelelehan,” Jurnal Sains Materi Indonesia, vol. 8, pp. 144–149, 2018.

B. Santosa, W. Wirawan, and R. E. Muljawan, “Pemanfaatan molase sebagai sumber karbon alternatif dalam pembuatan nata de coco,” Teknologi Pangan: Media Informasi dan Komunikasi Ilmiah Teknologi Pertanian, vol. 10, no. 2, pp. 61–69, 2019.

E. Syafri, A. Kasim, H. Abral, and A. Asben, “Cellulose nanofibers isolation and characterization from ramie using a chemical-ultrasonic treatment,” Journal of Natural Fibers, vol. 16, no. 8, pp. 1145–1155, Nov. 2019, doi: 10.1080/15440478.2018.1455073.

M. Lay, J. A. Méndez, M. Delgado-Aguilar, K. N. Bun, and F. Vilaseca, “Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole,” Carbohydr Polym, vol. 152, pp. 361–369, Nov. 2016, doi: 10.1016/j.carbpol.2016.06.102.

H. K. Chitte, G. N. Shinde, N. V. Bhat, and V. E. Walunj, “Synthesis of Polypyrrole Using Ferric Chloride (FeCl< sub>3</sub>) as Oxidant Together with Some Dopants for Use in Gas Sensors,” J Sens Technol, vol. 01, no. 02, pp. 47–56, 2011, doi: 10.4236/jst.2011.12007.

H. Abral, V. Lawrensius, D. Handayani, and E. Sugiarti, “Preparation of nano-sized particles from bacterial cellulose using ultrasonication and their characterization,” Carbohydr Polym, vol. 191, pp. 161–167, 2018.

D. Müller, C. R. Rambo, D.o.s.recouvreux, L. M. Porto, and G. M. O. Barra, “Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers,” Synth Met, vol. 161, no. 1–2, pp. 106–111, Jan. 2011, doi: 10.1016/j.synthmet.2010.11.005.

Downloads

Published

2024-04-10

How to Cite

Yunus, S., Manurung, M. F. R. ., Aulia, A., & Arief, Y. Z. . (2024). Enhancing Current Density and Specific Capacitance through Tensile TEMPO, Bacterial Cellulose and Polypirrole Nanocomposites. Andalasian International Journal of Applied Science, Engineering and Technology, 4(1), 44-52. https://doi.org/10.25077/aijaset.v4i1.118

Issue

Section

Articles