Application of the Average Based Fuzzy Time Series Model in Predictions Seeing the Use of Travo Substations

Authors

  • Mutammimul Ula Universitas Malikussaleh
  • Ivan Satriawan Universitas Malikussaleh
  • Rizky Putra Fhonna Universitas Malikussaleh
  • Arnawan Hasibuan Universitas Malikussaleh

DOI:

https://doi.org/10.25077/aijaset.v3i01.74

Abstract

PT PLN expects the delivery of information quickly in predicting the capacity of transformer substations in each region in view of population growth in industrial areas. Unbalanced and overloaded electricity that is not suitable for the capacity of the transformer substation so that the results of this study are more optimal in predicting the usage load at the transformer substation using the methodaverage based fuzzy time series. The application of this method can provide fast and accurate information in accordance with consumer expectations in predicting each need in each area and the number of managed substations. The capacity of the substation can be seen in 1 phase and 3 phase with the percentage of loading quickly and precisely with the current transformer card system. The purpose of the transformer distribution in this study is to look at reducing high voltage to low voltage, so that the voltage used is in accordance with the customer's electrical equipment rating or the load rating used by all consumers in each region. The research methodology is to determine the placement of distribution transformer locations that are not suitable which can affect the end voltage drop on consumers or the drop/drop in consumer line end voltage and view complete data from the specifications of the distribution transformers along with the locations of distribution transformers that can be managed through Development of a mobile device-based Distribution Transformer Recording System at PT PLN. The results of this study in transformer power 100 consumption 99.43, unbalanced 28%, fuzzification A8, FLRG G8, forecasting results 10.69 with a Mape forecast value of 0.57%. Furthermore, power consumption of transformer 50 is 36.70, unbalanced 78%, fuzzification A6, FLRG G6, forecasting results 23.91 with Mape 1.11%. Results with the smallest mape with each travo travo 50 in each usage area 28.43, unbalanced 26%, fuzzification A5, FLRG G5, forecasting results 23.91 with Mape 0.28%. The results of this study can determine the location of the transformer along with unbalance, overload and the estimated amount of power consumption load for the use of transformer substations in an area, especially the ULP PT.PLN area for each region in PT.PLN (Persero) Krueng Geukuh. Then the results of this study can be used as a reference for monitoring population growth with excessive transformer power loads (overload) so that later you can install new transformer substations with a capacity according to the number of customers

Author Biographies

Mutammimul Ula, Universitas Malikussaleh

Faculty of Engineering, Universitas Malikussaleh, Reuleut, Aceh Utara, Indonesia

Ivan Satriawan, Universitas Malikussaleh

Faculty of Engineering, Universitas Malikussaleh, Reuleut, Aceh Utara, Indonesia

Rizky Putra Fhonna, Universitas Malikussaleh

Faculty of Engineering, Universitas Malikussaleh, Reuleut, Aceh Utara, Indonesia

Arnawan Hasibuan, Universitas Malikussaleh

Faculty of Engineering, Universitas Malikussaleh, Reuleut, Aceh Utara, Indonesia

References

L. Fauziah, D. Devianto, and M. Maiyastri, “Peramalan Beban Listrik Jangka Menengah Di Wilayah Teluk Kuantan Dengan Metode Fuzzy Time Series Cheng,” J. Mat. UNAND, vol. 8, no. 2, p. 84, 2019, doi: 10.25077/jmu.8.2.84-92.2019.

E. V. Haryanto and F. Nasari, “Perbandingan Penerapan Metode Fuzzy Mamdani Dan Sugeno Dalam Memprediksi Tingginya Pemakaian Listrik ( Studi Kasus Kelurahan Xyz),” Semin. Nas. Inform., p. 534, 2015.

E. Bolturk, B. Oztaysi, and I. U. Sari, “Electricity consumption forecasting using fuzzy time series,” CINTI 2012 - 13th IEEE Int. Symp. Comput. Intell. Informatics, Proc., pp. 245–249, 2012, doi: 10.1109/CINTI.2012.6496768.

Y. H. Chen, W. C. Hong, W. Shen, and N. N. Huang, “Electric Load Forecasting Based on a Least Squares Support Vector Machine with Fuzzy Time Series and Global Harmony Search Algorithm,” Energies 2016, Vol. 9, Page 70, vol. 9, no. 2, p. 70, Jan. 2016, doi: 10.3390/EN9020070.

A. Hasibuan, W. V. Siregar, E. Ezwarsyah, and R. Kurniawan, “Audits for the Use and Strategic Of Energy Efficiency on the Campus Bukit Indah of Malikussaleh University,” Andalasian Int. J. Appl. Sci. Eng. Technol., vol. 1, no. 02, pp. 47–58, 2021.

R. Rimbawati, A. A. Hutasuhut, and M. Muharnif, “Peningkatan Kapasitas Daya Listrik Pada Pembangkit Listrik Tenaga Mikro Hidro Bintang Asih Guna Memenuhi Kebutuhan Penerangan,” J. Pengabdi. Kpd. Masy., vol. 24, no. 4, p. 909, 2019, doi: 10.24114/jpkm.v24i4.12836.

A. Hasibuan, K. Kartika, S. Mahfudz, and M. Daud, “Network Reconfiguration of 20 kV Sample Connection Substance LG-04 Lhokseumawe City Using Digsilent Power Factory Software Simulation 15.1,” Int. J. Adv. Data Inf. Syst., vol. 3, no. 1, pp. 20–29, 2022.

D. A. Putra and R. Mukhaiyar, “Monitoring Daya Listrik Secara Real Time,” Voteteknika (Vocational Tek. Elektron. dan Inform., vol. 8, no. 2, pp. 26–34, Aug. 2020, doi: 10.24036/VOTETEKNIKA.V8I2.109138.

A. Anantama, A. Apriyantina, S. Samsugi, and F. Rossi, “ALAT PANTAU JUMLAH PEMAKAIAN DAYA LISTRIK PADA ALAT ELEKTRONIK BERBASIS ARDUINO UNO,” J. Teknol. dan Sist. Tertanam, vol. 1, no. 1, pp. 29–34, Aug. 2020, doi: 10.33365/JTST.V1I1.712.

W. Sudiartha et al., “MANAJEMEN TRAFO DISTRIBUSI 20KV ANTAR GARDU BL031 DAN BL033 PENYULANG LILIGUNDI DENGAN MENGGUNAKAN SIMULASI PROGRAM ETAP,” Log. J. Ranc. Bangun dan Teknol., vol. 16, no. 3, p. 166, Feb. 2017, doi: 10.31940/LOGIC.V16I3.231.

D. N. Rahayu, D. Darmansyah, and M. Marchendra, “Analisis Kesuksesan Penerapan Aplikasi Manajemen Trafo (MANTRAP) Menggunakan Metode DeLone and McLean,” Dirgamaya J. Manaj. dan Sist. Inf., vol. 1, no. 3, pp. 21–29, Mar. 2022, doi: 10.35969/DIRGAMAYA.V1I3.201.

T. Setiawan, Syukri, and Muliadi, “Kajian Pemeliharaan Trafo Distribusi Menggunakan Metode Codition Based Maintenance (CBM),” Aceh J. Electr. Eng. Technol., vol. 2, no. 2, pp. 18–23, Dec. 2022, doi: 10.55616/AJEETECH.V2I2.389.

F. Fauziah, M. Mulyadi, and A. Fata, “Sistem Informasi Geografis Letak Trafo Step-Dow Pada PT PLN (Persero) Rayon Lhokseumawe Kota Dengan Menggunakan Metode Dijikstra,” J. Teknol. Rekayasa Inf. dan Komput., vol. 3, no. 2, 2020.

M. A. Alfurqon, “Pembangunan Aplikasi Maintenance Service Di Pt. Mitra Buana Koorporindo Berbasis Android,” Feb. 2021.

Y. Ekananta, L. Muflikhah, and C. Dewi, “Penerapan Metode Average-Based Fuzzy Time Series Untuk Prediksi Konsumsi Energi Listrik Indonesia,” J. Univ. Brawijaya, vol. 2, no. 3, pp. 1283–1288, 2018.

E. H. O. Rahmah and M. I. Irawan, “Penerapan Fuzzy Time Series Dalam Peramalan Nilai KWH Listrik Golongan Tarif Rumah Tangga di Jawa Timur,” J. Sains dan Seni ITS, vol. 8, no. 1, 2019, doi: 10.12962/j23373520.v8i1.42109.

G. C. Pratiwi, M. A. Auliq, and A. B. Nugroho, “Optimalisasi Forecasting Pembebanan Gardu Induk Jember Menggunakan Perbandingan Metode Time Series dan Fuzzy Sebagai Dasar Uprating Trafo,” J. Tek. Elektro dan Komputasi, vol. 2, no. 1, pp. 60–74, 2020, doi: 10.32528/elkom.v2i1.3135.

P. C. L. Silva, P. De Oliveira E Lucas, H. J. Sadaei, and F. G. Guimaraes, “Distributed Evolutionary Hyperparameter Optimization for Fuzzy Time Series,” IEEE Trans. Netw. Serv. Manag., vol. 17, no. 3, pp. 1309–1321, Sep. 2020, doi: 10.1109/TNSM.2020.2980289.

Y. T. Nugraha, M. F. Zambak, and A. Hasibuan, “Perkiraan Konsumsi Energi Listrik Di Aceh Pada Tahun 2028 Menggunakan Metode Adaptive Neuro Fuzzy Inference System,” CESS (Journal Comput. Eng. Syst. Sci., vol. 5, no. 1, pp. 104–108, 2020.

M. Bose and K. Mali, “Designing fuzzy time series forecasting models: A survey,” Int. J. Approx. Reason., vol. 111, pp. 78–99, Aug. 2019, doi: 10.1016/J.IJAR.2019.05.002.

H. Suyono, D. O. Prabawanti, M. Shidiq, R. N. Hasanah, U. Wibawa, and A. Hasibuan, “Forecasting of Wind Speed in Malang City of Indonesia using Adaptive Neuro-Fuzzy Inference System and Autoregressive Integrated Moving Average Methods,” in 2020 International Conference on Technology and Policy in Energy and Electric Power (ICT-PEP), 2020, pp. 131–136.

D. Y. Andik Bintoro Ula Mutammimul, “Application Of The Fuzzy Time Series Model In Clothing Material Stock Forecasting.,” J. Sist. Inf. dan Ilmu Komput. Prima (JUSIKOM PRIMA), vol. 6, no. 1, pp. 56–61, 2022.

Z. Ismail, R. Efendi, and M. M. Deris, “Application of Fuzzy Time Series Approach in Electric Load Forecasting,” https://doi.org/10.1142/S1793005715500076, vol. 11, no. 3, pp. 229–248, Aug. 2015, doi: 10.1142/S1793005715500076.

N. Kumar and S. Susan, “Particle swarm optimization of partitions and fuzzy order for fuzzy time series forecasting of COVID-19,” Appl. Soft Comput., vol. 110, p. 107611, Oct. 2021, doi: 10.1016/J.ASOC.2021.107611.

N. Van Tinh, “Enhanced Forecasting Accuracy of Fuzzy Time Series Model Based on Combined Fuzzy C-Mean Clustering with Particle Swam Optimization,” Int. J. Comput. Intell. Appl., vol. 19, no. 2, Jun. 2020, doi: 10.1142/S1469026820500170.

Downloads

Published

2023-05-07

How to Cite

Ula, M., Satriawan, I., Fhonna, R. P., & Hasibuan, A. (2023). Application of the Average Based Fuzzy Time Series Model in Predictions Seeing the Use of Travo Substations . Andalasian International Journal of Applied Science, Engineering and Technology, 3(1), 58-66. https://doi.org/10.25077/aijaset.v3i01.74

Issue

Section

Articles