Design of Household Electricity Protection and Monitoring Automation With IoT ESP32

Authors

  • Habib Satria Universitas Medan Area
  • Mangara Mual Gunawan Lubis Universitas Medan Area
  • Syarifah Muthia Putri Universitas Medan Area

DOI:

https://doi.org/10.25077/aijaset.v2i03.53

Abstract

existence of a household electrical protection and monitoring system to minimize danger. Therefore, a prototype design tool for household electricity protection and monitoring automation with IoT ESP 32 is developed. With the aim of carrying out voltage protection and electricity monitoring with a normal voltage of 220 VAC. designed to increase the existing protection system in the household, not to replace the function of the MCB. With a success rate of 99.6% voltage measurement, 97.5% current and 97.8% power measurement. Testing the tool using an inductive load in the form of a 45 watt 35, watt, 26 watt LED lamp and a resistive load in the form of a 400 watt iron set at the maximum hot point. below 210 VAC.

References

D. Sikeridis, A. Bidram, M. Devetsikiotis, and M. J. Reno, “A blockchain-based mechanism for secure data exchange in smart grid protection systems,” 2020.

C. Tong, Q. Wang, Y. Gao, M. Tong, and J. Luo, “Dynamic Lightning Protection of Smart Grid distribution system,” Electr. Power Syst. Res., vol. 113, 2014.

M. J. Perez-Molina, D. M. Larruskain, P. Eguia Lopez, G. Buigues, and V. Valverde, “Review of protection systems for multi-terminal high voltage direct current grids,” Renewable and Sustainable Energy Reviews, vol. 144. 2021.

X. Kang, C. E. K. Nuworklo, B. S. Tekpeti, and M. Kheshti, “Protection of micro?grid systems: a comprehensive survey,” J. Eng., vol. 2017, no. 13, 2017, doi: 10.1049/joe.2017.0584.

D. M. Larruskain, V. Valverde, E. Torres, G. Buigues, and M. Santos, “Protection systems for multi-terminal HVDC grids,” Renew. Energy Power Qual. J., vol. 1, no. 16, 2018.

J. E. da Silva, D. C. de Gouveia, and J. U. Junior, “Protection of Grid Connected Photovoltaic Systems (GCPVS),” Brazilian Arch. Biol. Technol., vol. 61, no. Special Issue, 2018.

M. Pasetti et al., “Evaluation of the use of class B LoraWAn for the coordination of distributed interface protection systems in smart grids,” J. Sens. Actuator Networks, vol. 9, no. 1, 2020.

A. A. Shobole and M. Wadi, “Multiagent systems application for the smart grid protection,” Renewable and Sustainable Energy Reviews, vol. 149. 2021.

H. Satria, S. Syafii, and A. Aswardi, “Analysis of Peak Power Capacity on Rooftop Solar PV 1.25 kWp at Sun Conditions 90 Degrees,” Int. J. Electr. Energy Power Syst. Eng., vol. 4, no. 3, 2021.

H. Satria, S. Syafii, R. Salam, M. Mungkin, and W. Yandi, “Design visual studio based GUI applications on - grid connected rooftop photovoltaic measurement,” TELKOMNIKA Telecommun. Comput. Electron. Control, vol. 20, no. 4, pp. 914–921, 2022.

H. Satria, “Pengukuran Parameter Sistem PV Power Plant Tersambung Pada Jaringan Tenaga Listrik Berdasarkan Real Time Clock,” Setrum Sist. Kendali-Tenaga-elektronika-telekomunikasi-komputer, vol. 9, no. 2, 2020.

B. P. Ganthia, S. K. Barik, S. Priyadarshini, and B. Patnaik, “Micro-grid design and protection system under several fault conditions,” Int. J. Eng. Adv. Technol., vol. 8, no. 6, 2019.

M. Rafiei, M. H. Khooban, M. A. Igder, and J. Boudjadar, “A novel approach to overcome the limitations of reliability centered maintenance implementation on the smart grid distance protection system,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 67, no. 2, 2020.

Downloads

Published

2022-10-12

How to Cite

Satria, H., Mual Gunawan Lubis, M. ., & Muthia Putri, S. . (2022). Design of Household Electricity Protection and Monitoring Automation With IoT ESP32. Andalasian International Journal of Applied Science, Engineering and Technology, 2(3), 133 - 139. https://doi.org/10.25077/aijaset.v2i03.53