# A Review of Strategies for Improving 3-Phase Induction Motor Performance

## DOI:

https://doi.org/10.25077/aijaset.v4i1.112## Abstract

The 3-phase induction motor is an electric motor with a strong, reliable, and easy-to-operate construction, and it is cheaper compared to other types of electric motors, making it widely used by the public. Although this motor is considered reliable, it still has some drawbacks, such as low performance, including starting torque, power factor, and efficiency compared to other types of electric motors. Therefore, research to improve the performance of this motor is ongoing. This paper aims to outline some methods that have been used by previous researchers to improve the performance of induction motors based on literature studies. Some of the methods discussed in this paper include the use of permanent magnets on the rotor, operating the 3-phase induction motor on a single-phase system, developing ferromagnetic materials for the motor, increasing the number of coil phases, and optimizing coil design in the motor. The advantages and disadvantages of using these methods to improve motor performance are briefly outlined.

## References

S. J. Chapman, Elecrical Machinery Fundamentals, 4th ed. New York: McGraw-Hill, 2005. [Online]. Available: www.mhhe.oom

P. C. Sen, Principles of Electrical Machines and Power Electronics, 2nd ed. New York: John Wiley & Sons, 1997.

W. Pietrowski and K. Górny, “Analysis of torque ripples of an induction motor taking into account a inter-turn short-circuit in a stator winding,” Energies, vol. 13, no. 14, 2020, doi: 10.3390/en13143626.

Janani Srinivasan, K. Selvaraj, J. Chitrarasu, and R. R, “Induction Motor in short pitch and full pitch winding configurations using FEA,” in 2016 International Conference on Emerging Technological Trends [ICETT], 2016, pp. 1–10.

M. M. TEZCAN and A. S. AKYURT, “Transforming of Conventional Type Squirrel Cage Induction Motor to Permanent Magnet Synchronous Motor for Improving Efficiency on Industrial Applications,” Int. Sci. Vocat. Stud. J., vol. 6, no. 1, pp. 32–40, 2022, doi: 10.47897/bilmes.1129634.

R. Ni et al., “Efficiency Enhancement of General AC Drive System by Remanufacturing Induction Motor with Interior Permanent Magnet Rotor,” IEEE Trans. Ind. Electron. 2015, ISSN. 0278-0046(p) 1557-9948, vol. 0046, no. c, pp. 1–12, 2015, doi: 10.1109/TIE.2015.2477478.

G. Joksimovi?, J. I. Melecio, P. M. Tuohy, and S. Djurovi?, “Towards the optimal ‘slot combination’ for steady-state torque ripple minimization: an eight-pole cage rotor induction motor case study,” Electr. Eng., vol. 102, no. 1, pp. 293–308, 2020, doi: 10.1007/s00202-019-00874-x.

M. Silva, F. J. T. E. Ferreira, G. Falc, and M. Rodrigues, “Novel Method to Minimize the Air-Gap MMF Spatial Harmonic Content in Three-Phase Windings,” in IEEE 2018 XIII International Conference on Electrical Machines (ICEM), 2018, vol. 2, no. 1, pp. 2504–2510.

W. Fei, P. C. K. Luk, J. Ma, J. X. Shen, and G. Yang, “A High-Performance Line-Start Permanent Magnet Synchronous Motor Amended From a Small Industrial Three-Phase Induction Motor,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4724–4727, 2009.

B. Stumberger, A. Hamler, V. Gorican, M. Jesenik, and M. Trlep, “Output power capability improvement in a flux-weakened permanent magnet synchronous motor with a third harmonic current injection,” J. Magn. Magn. Mater. 272–276 e1719–e1721, vol. 276, pp. 1719–1721, 2004, doi: 10.1016/j.jmmm.2003.12.713.

S. Saito, H. Tanaka, A. Nakajima, and K. Matsuse, “Independent Vector Control of Induction Motor and Permanent Magnet Synchronous Motor fed a Four-Leg Inverter,” in 2012 IEEE International Conference on Power Electronics, Drives and Energy System, December16-19, 2012, Bengaluru, India, 2012, pp. 1–6.

K. Sakai and N. Yuzawa, “Realizing High Efficiency using Pole-Changing Hybrid Permanent Magnet Motors,” in 2013 IEEE International Electric Machines & Drives Conference (IEMDC) - Chicago, IL, USA (2013.05.12-2013.05.15), 2013, pp. 462–467.

E. Levi, M. Jones, S. N, and Vukosavic, “A Series-Connected Two-Motor Six-Phase Drive With Induction and Permanent Magnet Machines,” IEEE Trans. ENERGY Convers., vol. 21, no. 1, pp. 121–129, 2006.

R. Vartanian and H. A. Toliyat, “Design and Comparison of an Optimized Permanent Magnet-Assisted Synchronous Reluctance Motor ( PMa-SynRM ) with an Induction Motor with Identical NEMA Frame Stators,” in 2009 IEEE Electric Ship Technologies Symposium (ESTS 2009) - Baltimore, MD, USA (2009.04), 2009, pp. 107–112.

M. Jones, S. . Vukosavic, and E. Levi, “Combining Induction and Permanent Magnet Synchronous Machines in a Series-Connected Six-Phase Vector-Controlled Two-Motor Drive,” in IEEE 36th Conference on Power Electronics Specialists, 2005. - Aachen, Germany (June 12, 2005, 2005, pp. 2691–2697.

B. Ackermann, “Single-Phase Induction Motor with Permanent,” IEEE Trans. Magn., vol. 36, no. 5, pp. 3530–3532, 2000.

L. N. Modran, “Digital Simulation of Induction and Permanent Magnet Synchronous Motor Starting,” in IEEE 2008 11th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) - Brasov, Romania (2008.05.22-2008.05.24), 2008, no. 4, pp. 1–7.

M. S. Manna, S. Marwaha, A. Marwaha, and C. Vasudeva, “Analysis of Permanet Magnet Linear Induction Motor ( PMLIM ) using Finite Element Method,” in IEEE 2009 International Conference on Advances in Recent Technologies in Communication and Computing, 2009, pp. 540–542. doi: 10.1109/ARTCom.2009.42.

M. Kondo, J. Kawamura, and N. Terauchi, “Performance Comparison between a Permanent Magnet Synchronous Motor and an Induction Motor as a Traction Motor for High Speed Train,” IEEJ Trans. Ind. Appl., vol. 126, no. 2, pp. 168–173, 2006.

D. Liang and V. Zhou, “Recent market and technical trends in Copper Rotors for High-Efficiency Induction Motors,” in 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), 2018, pp. 1943–1948. doi: 10.23919/IPEC.2018.8507879.

K. Kurihara, T. Ito, Y. Imaizumi, and T. Kubota, “Efficiency Maximization of a Single-Phase Capacitor-Run Permanent-Magnet Motor Using Response Surface Methodology,” in IEEE 2009 International Conference on Electrical Machines and Systems (ICEMS) - Tokyo, Japan (2009.11.15-2009.11.18), 2009, no. 4, pp. 6–9.

N. A. Ahmed, “Three-phase induction motor operating from single-phase supply with an electronically controlled capacitor,” Electr. Power Syst. Res., vol. 73, no. 2, pp. 121–128, 2005, doi: 10.1016/j.epsr.2004.06.007.

Y. A. Al-turki and H. Al-umari, “Application of the reference frame theory to the dynamic analysis of a three-phase induction motor fed from a single-phase supply,” Elsevier, vol. 53, pp. 149–156, 2000.

Z. Anthony, “Equivalent Circuits for the M31D-ZA Motor ? s Method ( Case Studies?: Currents and Power Factor of the motor ),” IJETT, vol. 25, no. 1, pp. 49–52, 2015.

Z. Anthony, “Analyzing Characteristics of the Sheda ? s Method for Operating the 3-phase induction Motor on Single Phase Supply ( Case studies?: output power and efficiency of the motor ),” IJETT, vol. 33, no. 4, pp. 175–179, 2016.

Z. Anthony, “A Simple Method For Operating The Three-Phase Induction Motor On Single Phase Supply (For Wye Connection Standard),” IJETT, vol. 5, no. 1, pp. 13–16, 2013.

Z. Anthony, “A Simple Method for Operating the Delta Connection Standard of the 3-phase Induction Motor on Single Phase Supply,” IJETT, vol. 15, no. 9, pp. 444–447, 2014.

W. Yaw-juen, L. Pierrat, and E. Helerea, “Balancing a Three-Phase Induction Motor Supplied from a Single-Phase Source with Two SVCs,” in IEEE 2017 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) & 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP), 2017, no. 3. doi: 10.1109/OPTIM.2017.7974982.

P. Brzezlrekl, J, Pillay, “Induction Motor Performance Fed from Single to Three Phase Converter,” IEEE, 1990.

Arash Hassanpour Isfahani, “Driver circuit and method for single-phase and three-phase induction motor,” USP No. 2017117826A1, 2017

O. J. M. Smith, “THREE PHASE MOTOR OPERATED FROM A SINGLE PHASE POWER SUPPLY AND PHASE CONVERTER,” USP No. 5,545,965, 1996

O. J. M. Smith, “MASTER THREE-PHASE INDUCTION MOTOR WITH SATELLITE THREE-PHASE MOTORS DRIVEN BY A SINGLE-PHASE SUPPLY,” USP No. 6,356,041 B1, 2002 doi: 10.1126/science.Liquids.

O. J. M. Smith, “THREE-PHASE INDUCTION MOTOR WITH SINGLE PHASE POWER SUPPLY,” USP No. 4,792,740, 1988

C. G. Johnslone and P. Calif, “CIRCUIT FOR OPERATING POLYPHASE INDUCTION MOTORS FROM SINGLE PHASE SUPPLY,” USP No. 3,673,480, 1972

D. M. Divan and R. Schneider, “SINGLE PHASE TO THREE PHASE CONVERTER,” USP No. 5,969,957, 1999

A. Krings, M. Cossale, A. Tenconi, J. Soulard, A. Cavagnino, and A. Boglietti, “Characteristics comparison and selection guide for magnetic materials used in electrical machines,” in 2015 IEEE International Electric Machines & Drives Conference (IEMDC), 2015, pp. 1152–1157. doi: 10.1109/IEMDC.2015.7409206.

M. Dems and K. Komeza, “Performance Characteristics of a High-Speed Energy-Saving Induction Motor with an Amorphous Stator Core,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 3046–3055, 2014, doi: 10.1109/TIE.2013.2251739.

I. Petrov, M. Niemela, P. Ponomarev, and J. Pyrhonen, “Rotor Surface Ferrite Permanent Magnets in Electrical Machines: Advantages and Limitations,” IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5314–5322, 2017, doi: 10.1109/TIE.2017.2677320.

N. Diga and C. Ghita, “Considerations on the Command and Analysis of the Low Speed Permanent Magnet Synchronous Machines Operating,” IEEE, pp. 1–4, 2016.

M. Lavanya, P. Selvakumar, D. S. Vijayshangkar, and D. C. Easwarlal, “Performance analysis of three phase induction motor using different magnetic slot wedges,” IEEE, pp. 164–167, 2014.

P. Rasilo, U. Aydin, T. P. Holopainen, and A. Arkkio, “Analysis of iron losses on the cutting edges of induction motor core laminations,” Proc. - 2016 22nd Int. Conf. Electr. Mach. ICEM 2016, pp. 1312–1317, 2016, doi: 10.1109/ICELMACH.2016.7732694.

K. Bourchas et al., “Influence of Cutting and Welding on Magnetic Properties of Electrical Steels,” XXII Int. Conf. Electr. Mach., vol. 9994, no. c, pp. 1817–1823, 2016, doi: 10.1109/TIA.2017.2698400.

S. F. Rabbi, P. Zhou, and M. A. Rahman, “Design and Performance Analysis of a Self-Start Radial Flux Hysteresis Interior Permanent Magnet Motor,” IEEE Trans. Magn., vol. 9464, no. c, pp. 10–13, 2017, doi: 10.1109/TMAG.2017.2695079.

K. S. S. Md Mojibur Rahaman, “Performance Analysis of Induction Machine with different types of magnetic material”.

M. M. Dias, H. J. Mozetic, J. S. Barboza, R. M. Martins, L. Pelegrini, and L. Schaeffer, “Influence of resin type and content on electrical and magnetic properties of soft magnetic composites (SMCs),” Powder Technol., vol. 237, pp. 213–220, 2013, doi: 10.1016/j.powtec.2013.01.006.

C. Sudakar et al., “Internal magnetostatic potentials of magnetization-graded ferromagnetic materials,” Appl. Phys. Lett., vol. 90, no. 6, pp. 10–13, 2007, doi: 10.1063/1.2437721.

I. Gonzalez-Prieto, M. J. Duran, F. Barrero, Bermudez, and H. M.Guzmán, “Impact of Post-fault Flux Adaptation on Six-phase Induction Motor Drives with Parallel Converters,” IEEE Trans. POWER Electron., vol. 8993, 2016, doi: 10.1109/TPEL.2016.2533719.

H. S. Che, E. Levi, M. Jones, W. P. Hew, and N. A. Rahim, “Current Control Methods for an Asymmetrical Six- phase Induction Motor Drive,” IEEE Trans. POWER Electron., vol. 29, no. 1, pp. 407–417, 2014, doi: 10.1109/TPEL.2013.2248170.

R. Jin, X. Jin, L. Dezhi, Y. Xidang, and C. Xiaopeng, “Research of Mathematical Model of the Twelve-phase Linear Induction Motor with Double-sided Long Stators,” Appl. Mech. Mater., vol. 417, pp. 156–163, 2013, doi: 10.4028/www.scientific.net/AMM.416-417.156.

H. S. Che, M. J. Duran, E. Levi, M. Jones, W. Hew, and N. A. Rahim, “Post-Fault Operation of an Asymmetrical Six-phase Induction Machine with Single and Two Isolated Neutral Points,” IEEE Trans. Power Electron., vol. 29, no. 10, pp. 5406–5416, 2013, doi: 10.1109/TPEL.2013.2293195.

I. Gonzalez-prieto, I. Zoric, M. J. Duran, and E. Levi, “Constrained Model Predictive Control in Nine- phase Induction Motor Drives,” IEEE Trans. Energy Convers., 2019.

I. S. De Freitas, M. L. Quirino, and F. Salvadori, “Twelve-Phase Induction Machine Analysis With Harmonic Injection,” in 2018 IEEE Energy Conversion Congress and Exposition (ECCE), 2018, pp. 1611–1618. doi: 10.1109/ECCE.2018.8557360.

M. Duran, I. Gonzalez-Prieto, N. Rios, and F. Barrero, “A Simple, Fast and Robust Open-phase Fault Detection Technique for Six-phase Induction Motor Drives,” IEEE Trans. Power Electron., 2017, doi: 10.1109/TPEL.2017.2670924.

M. A. Fnaiech, F. Betin, and G. Capolino, “Fuzzy Logic and Sliding-Mode Controls Applied to Six-Phase Induction Machine With Open Phases,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 354–364, 2010.

J. K. Pandit, S. Member, M. V Aware, and S. Member, “Direct Torque Control Scheme for a Six-Phase Induction Motor with Reduced Torque Ripple,” IEEE Trans. Power Electron., vol. 32, no. 9, pp. 7118–7129, 2016, doi: 10.1109/TPEL.2016.2624149.

M. J. Duran et al., “Optimal Fault-Tolerant Control of Six-Phase Induction Motor Drives with Parallel Converters,” IEEE Trans. Ind. Electron., vol. 0046, 2015, doi: 10.1109/TIE.2015.2461516.

A. Gautam, O. Ojo, M. Ramezani, O. D. Momoh, and F. Wayne, “Computation of Equivalent Circuit Parameters of Nine-phase Induction Motor in Different Operating Modes,” 2012. doi: 10.1109/ecce.2012.6342830.

A. S. Abdel-khalik, S. Member, and M. Abdel-majeed, “Effect of Winding Configuration on Six- Phase Induction Machine Parameters and Performance,” IEEE Access 2020, vol. XX, 2020, doi: 10.1109/ACCESS.2020.3044025.

Y. Demir and M. Aydin, “A Novel Dual Three-Phase Permanent Magnet Synchronous Motor with Asymmetric Stator Winding,” IEEE Trans. Magn., vol. 9464, no. c, pp. 1–4, 2016, doi: 10.1109/TMAG.2016.2524027.

Y. Demir, S. Member, and M. Aydin, “A Novel Asymmetric and Unconventional Stator Winding Configuration and Placement for Dual Three-Phase Surface PM Motor,” IEEE Trans. Magn., vol. 9464, no. c, pp. 1–5, 2017, doi: 10.1109/TMAG.2017.2710424.

J. Paredes, B. Prieto, M. Satrústegui, I. Elósegui, and P. González, “Improving the performance of a 1 MW induction machine by optimally shifting from a 3-phase to a 6-phase machine design by rearranging the coil connections,” IEEE Trans. Ind. Electron., vol. 0046, no. c, pp. 1–10, 2020, doi: 10.1109/TIE.2020.2969099.

P. Giangrande, V. Madonna, S. Nuzzo, and M. Galea, “Design of Fault-Tolerant Dual Three-Phase Winding PMSM for Helicopter Landing Gear EMA,” 978-1-5386-4192-7/18/$31.00 ©2018 IEEE, 2018.

A. S. Abdel-khalik, S. Member, A. M. Massoud, S. Member, S. Ahmed, and S. Member, “Application of Standard Three-Phase Stator Frames in Prime Phase Order Multiphase Machine Construction,” IEEE Trans. Ind. Electron., vol. 0046, no. c, pp. 1–12, 2018, doi: 10.1109/TIE.2018.2840497.

S. Sobhani, H. Yaghobi, and M. Samakoosh, “Optimize efficiency and torque in the single-phase induction motor by adjusting the design parameters,” 12th Int. Conf. Environ. Electr. Eng. EEEIC 2013, pp. 237–241, 2013, doi: 10.1109/EEEIC.2013.6549623.

E. C. Bortoni, J. V. B. Jr, P. V. V Silva, V. A. D. Faria, and P. A. V Vieira, “Evaluation of manufacturers strategies to obtain high-e ffi cient induction motors,” Sustain. Energy Technol. Assessments, vol. 31, no. November 2018, pp. 221–227, 2019, doi: 10.1016/j.seta.2018.12.022.

F. Ahmed, E. Ghosh, and N. C. Kar, “Transient Thermal Analysis of a Copper Rotor Induction Motor using a Lumped Parameter Temperature Network Model,” IEEE, no. 1, 2016.

K. Bourchas et al., “Influence of cutting and welding on magnetic properties of electrical steels,” 2016 XXII Int. Conf. Electr. Mach., pp. 1815–1821, 2016, doi: 10.1109/ICELMACH.2016.7732770.

J. Goss, M. Popescu, and D. Staton, “A Comparison of an Interior Permanent Magnet and Copper Rotor Induction Motor in a Hybrid Electric Vehicle Application,” in 2013 IEEE International Electric Machines & Drives Conference (IEMDC) - Chicago, IL, USA (2013.05.12-2013.05.15), 2013, pp. 220–225.

X. Lu, K. L. V. Iyer, and N. C. Kar, “Mathematical Modeling and Comprehensive Analysis of Induction Assisted Permanent,” in IEEE 2011 1st International Electric Drives Production Conference (EDPC) - Nuremberg, Germany (2011.09.28-2011.09.29), 2011, pp. 147–152.

Y. Shibata, N. Tsuchida, and K. Imai, “Power Factor and Efficiency Characteristics of the Induction Motor with Free Rotating Magnets,” IEEJ Trans. Ind. Appl., vol. 117, no. 8, pp. 986–991, 1997, doi: 10.1541/ieejias.117.986.

M. Kondo, J. Kawamura, and N. Terauchi, “Performance comparison between a permanent magnet synchronous motor and an induction motor as a traction motor for high speed train,” IEEJ Trans. Ind. Appl., vol. 126, no. 2, pp. 168–173, 2006, doi: 10.1541/ieejias.126.168.

K. Kazumi, I. Takahiro, I. Yuki, and T. Kubota, “Efficiency Maximization of a Single-Phase Capacitor-Run Permanent-Magnet Motor Using Response Surface Methodology,” IEEE Trans. Energy Cover., no. 4, pp. 6–9, 2009.

A. I. Alolah, M. A. Badr, and M. A. Abdel-halim, “A CAPACITOR START THREE PHASE INDUCTION MOTOR,” IEEE Trans. Energy Convers., vol. 10, no. 4, pp. 675–680, 1995.

O. J. M. Smith, “Large low-cost single-phase semihexTM motors,” IEEE Trans. Energy Convers., vol. 14, no. 4, pp. 1353–1358, 1999, doi: 10.1109/60.815072.

I. Çadirci, S. Varma, M. Ermis, and T. Gülsov, “A 20 kW, 20 kHz unity power factor boost converter for three-phase motor drive applications from an unregulated single-phase supply,” IEEE Trans. Energy Convers., vol. 14, no. 3, pp. 471–478, 1999, doi: 10.1109/60.790899.

V. Malyar, O. Hamola, and V. Maday, “Calculation of capacitors for starting up a three-phase asynchronous motor fed by single-phase power supply,” in IEEE 2016 17th International Conference Computational Problems of Electrical Engineering (CPEE), 2016, pp. 1–4.

F. Francini, E. Poskovie, L. Ferrari, A. Cavagnino, and C. Bramerdorfer, “Application of new magnetic materials for axial flux mahine prototypes,” IEEE 2017 Int. Conf. Optim. Electr. Electron. Equip. 2017 Intl Aegean Conf. Electr. Mach. Power Electron., 2017.

Z. Haisen, Z. Dongdong, W. Yilong, Z. Yang, and X. Guorui, “Piecewise Variable Parameter Piecewise Variable Loss Model of Laminated Steel and its Application in Fine Analysis of Analysis of Iron loss of Inverter-Fed Induction Motors,” IEEE Trans. Ind. Appl., vol. 9994, no. c, pp. 1–1, 2017, doi: 10.1109/TIA.2017.2740278.

M. Rivas, P. Gorria, C. Muñoz-Gómez, and J. C. Marti?ez-García, “Quasi-Static AC FORC Measurements for Soft Magnetic Materials and Their Differential Interpretation,” IEEE Trans. Magn., vol. 53, no. 11, pp. 1–7, 2017, doi: 10.1109/TMAG.2017.2696165.

N. Duan, W. Xu, Y. Li, S. Wang, Y. Guo, and J. Zhu, “Comparison of Limiting Loop Model and Elemental Operator Model for Magnetic Hysteresis of Ferromagnetic Materials,” IEEE Trans. Magn., vol. 53, no. 11, 2017, doi: 10.1109/TMAG.2017.2711265.

T. Kauder and K. Hameyer, “Performance Factor Comparison of Nanocrystalline, Amorphous, and Crystalline Soft Magnetic Materials for Medium-Frequency Applications,” IEEE Trans. Magn., vol. 53, no. 11, pp. 2015–2018, 2017, doi: 10.1109/TMAG.2017.2702184.

H. M. Kim, K. W. Lee, D. G. Kim, J. H. Park, and G. S. Park, “Design of cryogenic induction motor submerged in liquefied natural gas,” IEEE Trans. Magn., vol. 54, no. 3, pp. 4–7, 2018, doi: 10.1109/TMAG.2017.2751099.

C. Wu, M. Huang, D. Luo, Y. Jiang, and M. Yan, “SiO2 nanoparticles enhanced silicone resin as the matrix for Fe soft magnetic composites with improved magnetic, mechanical and thermal properties,” J. Alloys Compd., vol. 741, pp. 35–43, 2018, doi: 10.1016/j.jallcom.2017.12.322.

W. Ding, L. Jiang, Y. Liao, J. Song, B. Li, and G. Wu, “Effect of iron particle size and volume fraction on the magnetic properties of Fe/silicate glass soft magnetic composites,” J. Magn. Magn. Mater., vol. 378, pp. 232–238, 2015, doi: 10.1016/j.jmmm.2014.09.019.

J. Laksar, R. Cermak, and K. Hruska, “Challenges in the electromagnetic design of multiphase machines: Winding and equivalent circuit parameters,” Energies, vol. 14, no. 21, 2021, doi: 10.3390/en14217335.

A. Shawier, A. Habib, M. Mamdouh, A. S. Abdel-Khalik, and K. H. Ahmed, “Assessment of Predictive Current Control of Six-Phase Induction Motor with Different Winding Configurations,” IEEE Access, vol. 9, pp. 81125–81138, 2021, doi: 10.1109/ACCESS.2021.3085083.

M. A. Fnaiech, F. Betin, G. A. Capolino, and F. Fnaiech, “Fuzzy logic and sliding-mode controls applied to six-phase induction machine with open phases,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 354–364, 2010, doi: 10.1109/TIE.2009.2034285.

A. S. Abdel-Khalik, M. S. Abdel-Majeed, and S. Ahmed, “Effect of Winding Configuration on Six-Phase Induction Machine Parameters and Performance,” IEEE Access, vol. 8, pp. 223009–223020, 2020, doi: 10.1109/ACCESS.2020.3044025.

J. Paredes, B. Prieto, M. Satrústegui, I. Elósegui, and P. González, “Improving the Performance of a 1-MW Induction Machine by Optimally Shifting from a Three-Phase to a Six-Phase Machine Design by Rearranging the Coil Connections,” IEEE Trans. Ind. Electron., vol. 68, no. 2, pp. 1035–1045, 2021, doi: 10.1109/TIE.2020.2969099.

I. Gonzalez-Prieto, M. J. Duran, F. Barrero, M. Bermudez, and H. Guzman, “Impact of Postfault Flux Adaptation on Six-Phase Induction Motor Drives with Parallel Converters,” IEEE Trans. Power Electron., vol. 32, no. 1, pp. 515–528, 2017, doi: 10.1109/TPEL.2016.2533719.

A. S. Abdel-khalik, A. M. Massoud, and S. Ahmed, “Nine-Phase Six-Terminal Induction Machine Modelling using Vector Space Decomposition,” IEEE Trans. Ind. Electron., vol. 0046, no. c, 2018, doi: 10.1109/TIE.2018.2833041.

H. E. Jordan, R. C. Zowarka, and S. B. Pratap, “Nine-phase armature windings design, test and harmonic analysis,” 2004 12th Symp. Electromagn. Launch Technol., pp. 202–206, 2004, doi: 10.1109/elt.2004.1398074.

A. A. Rockhill and T. A. Lipo, “A simplified model of a nine-phase synchronous machine using vector space decomposition,” Electr. Power Components Syst., vol. 38, no. 4, pp. 477–489, 2010, doi: 10.1080/15325000903482749.

S. I. Suriano-Sánchez, M. Ponce-Silva, V. H. Olivares-Peregrino, and S. E. De León-Aldaco, “A Review of Torque Ripple Reduction Design Methods for Radial Flux PM Motors,” Eng, vol. 3, no. 4, pp. 646–661, 2022, doi: 10.3390/eng3040044.

A. Selema, M. N. Ibrahim, and P. Sergeant, “Electrical Machines Winding Technology: Latest Advancements for Transportation Electrification,” Machines, vol. 10, no. 7, pp. 1–29, 2022, doi: 10.3390/machines10070563.

S. M. S. H. Rafin, Q. Ali, S. Khan, and T. A. Lipo, “A novel two-layer winding topology for sub-harmonic synchronous machines,” Electr. Eng., vol. 104, no. 5, pp. 3027–3035, 2022, doi: 10.1007/s00202-022-01531-6.

J. Chen, Y. Fujii, M. W. Johnson, A. Farhan, and E. L. Severson, “Optimal Design of the Bearingless Induction Motor,” IEEE Trans. Ind. Appl., vol. 57, no. 2, pp. 1375–1388, 2021, doi: 10.1109/TIA.2020.3044970.

G. Rezazadeh, F. Tahami, G. A. Capolino, S. Vaschetto, Z. Nasiri-Gheidari, and H. Henao, “Improvement of Concentrated Winding Layouts for Six-Phase Squirrel Cage Induction Motors,” IEEE Trans. Energy Convers., vol. 35, no. 4, pp. 1727–1735, 2020, doi: 10.1109/TEC.2020.2995433.

## Downloads

## Published

## How to Cite

*Andalasian International Journal of Applied Science, Engineering and Technology*,

*4*(1), 01-12. https://doi.org/10.25077/aijaset.v4i1.112

## Issue

## Section

## License

Copyright (c) 2024 Zuriman Anthony, Prof. Refdinal Nazir, Dr. Muhammad Imran Hamid

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.