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Abstract— In the recent past, there has been a growing need for ultra-low latency and high-

data-rate communication. In Non-Line-of-Sight (NLoS) communication, the channel capacity 

and accuracy of transmission are significantly affected by interferences, lowering the Quality of 

Service (QoS). An intelligent Reflecting Surface (IRS) has risen as a potential solution to 

challenges associated with NLOS communication including low data rate, multipath fading, and 

high BER. However, to leverage the performance gains of the IRS, effective and highly accurate 

channel estimation is crucial as it facilitates optimal phase shift optimization. This work 

investigated the performance of four main channel estimation algorithms in an IRS-aided 

system; LS, DD, DFT, and  MMSE in terms of their BERs and effects on the convergence 

behavior of the Stochastic Convex Approximation (SCA) algorithm following the Armijo rule. 

The objectives of this work were to determine how different channel estimation schemes 

influence the BER and test the different rates of convergence. Results indicate that in cases 

without statistical knowledge of the channel, the DD method provides the best performance. 

The main advantage of the DD method is that it effectively tracks the possibly varying channels 

and provides an effective update technique that is not dependent on pilot symbols. This work 

shows that the communication needs, complexity, and accuracy should be carefully considered 

when selecting the channel estimation method for IRS-aided communication systems. The 

outcomes of this research have a critical role in shaping future wireless communication systems 

by aiding in the adoption of the most optimal channel estimation schemes that fit with specific 

user needs and resource constraints.  
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1. Introduction 

In today’s wireless communication systems, there is a greater need for high speed, low latency, 

and high accuracy transmission to meet the rising demands posed by data-hungry IoT devices and 

communication systems [1]. An Intelligent Reflecting Surface (IRS) has gained popularity in the 

research community as one of the potential solutions to the challenges that plague the wireless 

environment. According to [2], these challenges include multipath fading, interference, and high path 

loss, which are common in Non-Line-Of-Sight (NLOS) systems. In such conditions, accurate channel 

estimation and phase shift optimization are vital. Channel estimation entails estimating the Channel 

Impulse Response (CIR), for optimized transmission, which leads to an increase in the data 

throughput, minimal Bit Error Rate (BER), and enhanced spectral efficiency [3]. 

The Least Squares (LS), Decision-Directed (DD), Minimum Mean Square Error (MMSE) and 
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Discrete Fourier Transform (DFT) are some of the commonly used channel estimation methods in 

IRS-aided systems [4]. The LS estimation method is a pilot-based technique characterized by 

simplicity and computational efficiency, which have made it common in IRS-aided systems [5], [6], 

[7], [8]. Further, the LS method was applied in [9] with an ON/OFF IRS mode and shown to offer 

fairly accurate results with minimal complexity.  However, it does not utilize the statistical properties 

of the channel and can be prone to performance decline in low Signal-to-Noise Ratio (SNR) settings. 

The DD estimation scheme, on the other hand, is based on initial estimates from the pilot 

symbols and then uses the decoded data symbols for subsequent channel tracking and update [10]. The 

Decision-Directed (DD) method has been found to enhance data accuracy as it has the lowest BER 

[11] and an order of magnitude lower complexity compared to machine-learning channel estimation 

algorithms [12]. Further, its application in WLAN systems has been investigated, showing that it leads 

to low PER and can compensate for channel distortions as indicated in [13] - [14]. 

The MMSE estimation methodology is a combination of LS estimate and the statistical 

knowledge of the channel and noise. MMSE leads to a better performance than LS and DD estimation, 

but it has the disadvantage of a higher computational complexity and requires knowledge of the 

channel statistics [15]. Authors in [16] tested the performance of MMSE in time-varying environments 

and proved its robustness and applicability in LTE systems. 

On the other hand, the DFT estimation method utilizes the underlying structure of the channel in 

the frequency domain, which makes it very important for orthogonal frequency-division multiplexing 

(OFDM) systems [17]. Authors in [18] designed an IRS activation pattern following a series of DFTs 

and reported that in comparison to the LS method, the DFT approach has a variance of one order less, 

implying that it significantly reduces the training period. However, DFT estimators have been reported 

to experience a high error floor at high SNRs [19]. 

An IRS is a diffuse scatterer whose phase shifts must be optimized for spectral efficiency and 

enhanced data rates. Optimization entails determining the best operating conditions to achieve the 

desired output. In this case, the IRS optimization process requires a determination of optimal phase 

shifts and/or amplitude shifts. Some of the phase shift optimization methods used include Semidefinite 

relaxation and stochastic convex approximation (SCA). From the research done by [20], the SCA 

algorithm outperforms the semidefinite relaxation method in terms of complexity and convergence 

rate. 

The fundamental concept underlying SCA algorithm is to iteratively approximate the non-

convex objective functions and constraints with convex approximations, which can then be solved 

effectively using normal convex optimization methods [21]. The SCA method relies on gradient 

descent, in which the Armijo rule finds application. The Armijo rule is a well-known backtracking line 

search technique used in gradient descent algorithms for the optimization of phase shifts in IRS 

systems aimed at maximizing the Signal-to-Interference-Plus- Noise- Ratio (SINR) to improve the 

overall system performance [22]. Channel estimates provide a better initialization for the Armijo rule 

which follows gradient descent [23]. 

The primary objectives of this research were twofold; comparing the BER performance of the 

LS, DD, MMSE, and DFT channel estimation schemes under different channel conditions and 

analyzing their effect on the convergence property of the Stochastic Convex Approximation (SCA) 

algorithm for phase shift optimization. Through the performance and convergence assessment of the 

SCA algorithm following the Armijo rule with different channel estimation schemes, this research 

highlights the available trade-offs that should be taken into account while selecting a fitting channel 

estimation technique for optimal passive beamforming in IRS-aided systems. 
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2. Method          

2.1 Simulation Set-up and Channel Modelling 

This work focused on an NLOS WLAN system with the direct path from the Access Point (AP) 

to the User Equipment (UE) being completely blocked. An IRS with 100 passive elements was 

introduced midway between the user and the AP to provide a virtual Line-Of-Sight LOS for the 

signals. This central positioning is based on the need to mitigate the multiplicative path loss effect 

associated with IRS systems which increases with an increase in distance [24]. A pictorial 

representation of the system is shown in Figure 1 below. 

 

Figure 1. NLOS IRS-aided system 

A Single Input Single Output (SISO) system with the AP and UE each having one receive 

antenna. A Uniform Rectangular Array (URA) is considered for the IRS elements which are separated 

by λ/2. This separation ensures no inter-element interference [25]. The IRS is in the Fraunhofer far-

field of the AP and UE and, therefore, the IRS channels can be modelled using a simple geometric 

model with the IRS being treated as a single reflector with no mutual coupling [26] - [27].  Channels G 

and H_r are modelled as; 

 

(1) 

 

 

(2) 

 

Where; 

G  - is the AP-IRS channel 

  - is the IRS-UE channel 

    - is the Rician factor  
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               and  are NLOS components whose elements are chosen from  

            is the steering vector and , and  are the angular parameters 

and  are the path losses for channels G and Hr, and are modelled following the IEEE 

802.11ax standard as in equation (3) below. 

  (3) 

2.2 Channel Estimation 

For a completely passive IRS, it is more cost-effective to estimate the cascaded channel H_r ɸG. 

To achieve this, block-type pilots are transmitted from the UE to the AP and used to estimate the 

cascaded channel gain. This work considered a constant amplitude, continuous phase shift approach 

where the phase of reflecting element n is given as θ_n=e^jφ for φ ₵ [0,2π] which ensures maximum 

reflection at an amplitude of 1[28]. For the transmission protocol, a Time Division Duplexing (TDD) 

protocol is considered for uplink and downlink transmissions and channel reciprocity for the CSI 

acquisition in the downlink based on the uplink training is considered as shown in Figure 2 below. 

 

Figure 2. The TDD transmission protocol 

Let the UE transmit X data symbols, the signal received at the AP is given as; 

  (4) 

 Where; 

Z-noise at the AP 

Equation (4) can be rewritten as; 

  (5) 

For a total of K subcarriers, the received training symbol following OFDM transmission is given by 

equation (6); 
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(6) 

 is the channel vector representing  in equation (5) above. 

2.2.1 LS Channel Estimation 

The LS estimate obtained from the extracted pilot symbols is given as; 

 

 
(7) 

2.2.2 DD Channel Estimation 

DD channel estimation is done to update the channel estimates using decoded symbols. The 

DD estimation process is represented in the algorithm below, where the data symbols need to be 

extracted, compensated by the channel estimates for the previous symbols and updated using the 

compensated symbols. 

DD Estimation Algorithm 

1 input: 

The Lth received OFDM symbol,  

2 Retrieve the Channel estimate for the L-1th estimate from the LS estimates,  

3 Compensate for the Lth received symbol using the L-1th estimate,   

4 Make hard decisions for the compensated symbols,   

5    Update the channel estimate by the compensated symbols,    

2.2.3  MMSE Channel Estimation 

The primary goal in MMSE is to minimize the Mean Square Error (MSE) by finding a better 

linear estimate. Using the LS estimates, the MMSE estimate is given as; 

  (8) 

Where; 

matrix between the true channel vector and temporary 

channel estimate vector in the frequency domain. 

 



AIJASET – Vol 04, No 03, November 2024. 241-253 

https://doi.org/10.25077/aijaset.v4i3.194 

246 
 

 

  2.2.4   DFT Channel Estimation  

The DFT-based channel estimation method improves the performance of LS or MMSE 

channel estimation by eliminating the effect of noise outside the maximum channel delay thus 

minimizing the effect of noise as detailed in [29]. Taking the IDFT of the LS estimate, the DFT 

channel estimate for a maximum channel delay  L, is given as; 

  (9) 

Transforming back to the frequency domain we have; 

  (10) 

In summary, the process for BER computation is illustrated in the flowchart below; 

 

Figure 3. BER computation flowchart 
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The following section describes how the performance of these four channel estimation methods 

was examined as they were used to initialize the Armijo algorithm, showing how they influence the 

convergence behavior and step sizes.  

2.3 Optimization 

In this step, the goal was to find the optimal θ that maximizes the achievable rate. From equation 

(4), the SINR is shown in equation (11) as; 

 

 

(11) 

With the beamforming weight w designed as matched beamforming using the channel estimates, the 

optimization problem is formulated as; 

 
 

(12) 

 θ is updated by; 

 
 

(11) 

Where; 

 
 (12) 

 
 (13) 

Where;  

 is the effective channel gain  

  and  are auxiliary variables 

Further, since  and , the update rule is recast to; 

 

 
(14) 

Where = [ T 

f2 is non-convex and, therefore, a surrogate function is formulated using SCA which is solved to yield 

a stationary solution for f2. This gives  which must satisfy two conditions; 

  

 

(15) 



AIJASET – Vol 04, No 03, November 2024. 241-253 

https://doi.org/10.25077/aijaset.v4i3.194 

248 
 

Using Taylor expansion, f3 can be formulated as; 

 
 

(16) 

Thus,  is updated by; 

 

 
(17) 

Where  is chosen by Armijo rule. For a total of R iterations, the phase shift is updated by; 

 

 
(18) 

The solution guarantees a stationary solution for P (1) which is the optimal solution for the data rate 

maximization problem. For each simulation point, an average of 102 iterations were performed. The 

algorithm is summarized below; 

Algorithm: SCA Update for  

1 Input: 

Computed channel estimates 

2 Set r=0 and compute the beamforming weight with the channel estimates 

3 Initialize  to feasible values 

4 Set r=r+1 

5 Compute U and v by (12) and (13) 

6 Search  by Armijo rule 

7 Update  by (18) 

8 Repeat steps 3-7 until the value of f3 converges 

3. Result and Discussion 

This section presents a discussion of the results obtained from this research. It should be noted 

that in this case, a quasi-static model was considered, where the AP, IRS and UE are in fixed 

positions.  BER is a crucial factor in communication systems as it determines the accuracy of data 

transmitted, particularly in NLOS scenarios where interferences can cause significant distortion in the 

transmitted data. The main goal of this work was to examine how various channel estimation schemes 

affect the accuracy and capacity by investigating BER and the convergence behavior of the phase shift 

algorithm. The outcomes are presented below. 
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3.1 Error Rates 

 
Figure 4. BER v. EbNo 

 

 
 

Figure 5. PER v. EbNo 

The DD channel estimation scheme exhibits the best BER and PER performance among the four 

methods across the entire EbNo range as it has the lowest error values, indicating its superiority in 

minimizing bit errors. This superior performance can be attributed to the channel tracking and update 
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capabilities of the DD method. In regards to complexity, the DD approach is independent of the IRS as 

it does not require subsequent transmission of pilots after the data symbols are decoded, while the LS 

requires N training symbols to estimate the channel coefficients associated with the IRS [30]. This 

implies that DD has a lower complexity than the LS, MMSE, and DFT methods as they depend on 

pilot transmission. 

The DFT estimation scheme shows the second-best BER and PER performance after DD. At 

lower EbNo values, the DFT curve closely follows the DD curve, suggesting comparable performance 

in low SNR conditions. However, as the EbNo increases, the gap between DD and DFT widens, 

indicating that the DD scheme can better exploit the higher SNR to further reduce the BER than the 

DFT approach. 

The MMSE estimation scheme's BER performance falls between the DFT and LS methods. At 

lower EbNo values, the MMSE curve closely follows the LS curve, indicating similar performance in 

low SNR conditions. However, as the EbNo increases, the MMSE curve gradually approaches the 

DFT curve, suggesting that it can exploit the higher SNR to improve its BER performance compared 

to LS. This improved performance can be attributed to the MMSE technique's optimal estimation of 

the channel by leveraging the statistical knowledge of the channel and noise.  

The LS estimation method exhibits the worst BER performance among the four schemes across 

the entire EbNo range. The LS curve consistently has higher BER values compared to the other 

methods. This can be attributed to the fact that LS estimation is a simple technique that does not 

account for the statistical properties of the channel and noise, leading to suboptimal channel estimates 

and higher bit errors. These results highlight the importance of considering the trade-offs between 

estimation accuracy, computational complexity, and channel knowledge when selecting the 

appropriate channel estimation scheme for a given communication system and operating conditions. 

3.2 Convergence behavior 

The channel conditions, described by the various channel estimates have a significant influence 

on the convergence behavior of the phase shift algorithm. The step size often called the learning rate, 

is a crucial factor in gradient descent optimization techniques. It specifies the magnitude of the step 

taken in the negative direction of the gradient throughout each iteration of the optimization process. 

Step size has a considerable impact on the algorithm's convergence speed and stability. SCA, which 

entails a gradient descent technique updates the parameters (θ) at each iteration as in the equation 

below; 

  (19) 

 

Where k indicates the step size, and ∇f(θ(t)) is the slope of the objective function f(θ) computed at the 

current parameter values, θ(t).  

The Armijo algorithm is a line search method that determines the proper step size for each 

iteration of the gradient descent process. The algorithm determines the biggest step size that meets the 

Armijo condition, resulting in a lower objective function value at the new point (θ(t+1)) compared to 

the present position (θ(t). The Armijo condition is illustrated in the equation below; 

 
 

 

(20) 

Where, c is a constant commonly set between 0 and 1, and ||∇f(θ(t)) || is the gradient's norm. 

The Armijo algorithm begins with a starting step size k0 and determines whether the Armijo 

criterion is met. If the criterion is met, the current step size is acceptable. If not, the step size is 

decreased by a shrinking factor (usually 0.5 or 0.1) till the requirement is met. The performance of the 

Armijo algorithm is verified by evaluating the step sizes taken and the number of iterations taken for 
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the algorithm to converge.  These results are indicated in Figure 6 below. 

 
Figure 6. Armijo parameter v. number of iterations 

In this work, the starting step size was chosen as 1 and the algorithm iteratively selected a 

sufficient decrease parameter (the Armijo parameter) for convergence of the SCA algorithm. From the 

results in Figure 6, the Armijo algorithm shows a good performance since the step size is maintained 

at 0-1. The DD method shows the fastest convergence at the 20th iteration, followed by the MMSE 

method at the 25th iteration. Convergence is reached at the 28th iteration with the DFT approach, 

while the LS shows the poorest performance, with the algorithm converging at the 32nd iteration. 

These results indicate that in NLOS scenarios, determining the most appropriate channel 

estimation method is critical for performance optimization and should be carefully considered to 

guarantee low BER, high achievable data rate, and minimal complexity. According to the results 

obtained from this simulation, the DD estimation method appears to be the optimal choice. 

4. Conclusion 

This work has explored two key aspects of an NLOS communication system; the BER and 

convergence behavior of the phase shift optimization algorithm following the LS, DD, DFT and 

MMSE channel estimation methods. An IRS has been proven to significantly improve NLOS 

communication through passive beamforming. However, acquiring perfect CSI in IRS systems is 

challenging. Therefore, to leverage the performance gains of an IRS, it is essential to select the best-

suited channel estimation method that guarantees the lowest BER and forms the best initialization 

point for the phase shift algorithm leading to faster convergence at minimal complexity. Results have 

indicated that while the LS is relatively straightforward, it leads to high BER and causes the phase 

shift algorithm to converge slowly. 

DFT and MMSE offer relatively better performance than LS but it is important to note that 

MMSE is best suited for cases with the statistical knowledge of the channel characteristics. DD 

effectively tracks the changes in channel characteristics and updates the channel estimates based on 

the decoded data symbols, making it more accurate and suitable for NLOS scenarios. 
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This work was done under the consideration of slow-fading channels. In future, it may be 

important to evaluate the performance of these algorithms in fast-fading and mobile environments in 

which case the DD may suffer the disadvantage of relying on outdated initial channel estimates. 
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