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Abstract— The study aimed to assess the applicability of XGBoost in determining the residual 

compressive strength of rice husk ash concrete exposed to elevated temperature reducing the need 

for costly, time-consuming laboratory experiments. Data was collected from the available 

literature with 75% used for training and 25% for testing. Synthetic data was created using the 

Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP). The model 

accuracy was checked using statistical scores: coefficient of determination (R2), root mean 

squared error (RMSE), and mean absolute error (MAE). SHAP values were used for feature 

importance analysis. Coding was done in Python using Jupyter Notebook. With the original data, 

the model produced RMSE, R2, and MAE test values of 3.351, 0.939, and 2.994 respectively 

indicating excellent performance. The combined original and synthetic dataset gave RMSE, R2, 

and MAE values of 0.071, 0.941, and 0.053 respectively signifying improved performance. The 

feature analysis identified higher temperature, unheated compressive strength, and water-cement 

ratio as the most significant factors in the XGBoost prediction. The exposure duration, alumina 

content, and iron oxide had minimal influence. 
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1. Introduction 

Climate change is a significant global issue resulting in detrimental effects, including elevated 

temperatures, severe droughts, intensified storms, increasing sea levels, and glacial melting, The 

production of cement is reported to be a very energy-intensive activity that produces a lot of CO2 

emissions that contribute to the greenhouse effect and cause global warming [1]. This process is also 

quite expensive thus subsequently increasing the cost of construction.  

Higher temperatures greater than the normal atmospheric temperature will cause concrete to 

undergo thermal cracking whereby increased internal stresses in the concrete due to the heat causes it to 

crack. For reinforced concrete when cracks form, they expose steel reinforcement and in places such as 

coastal areas where there is chloride in the salt water, this exposes them to rust. The high temperatures 

cause the bending and spalling of concrete and eventually may lead to structural failure of concrete 

structures. These elevated temperatures are expected in industries with furnaces, airfield pavements, 

nuclear power plants, jet aircraft engine blasts, and building fires. Thus, there is a need to design and 

construct these concrete structures to perform adequately under elevated temperatures. 

Rice husk ash is an environmentally safe waste material obtained from rice that has been proposed 

as a supplemental cementitious material. Its production does not involve the emission of CO2 and thus 

will not have any adverse effect on the climate. Furthermore, being agro-waste, it is easily and readily 

obtained, reducing the cost of production, and leading to a decrease in construction cost. The literature 
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further implies the incorporation of rice husk ash into concrete has positive effects on its properties 

which include higher compressive strength and durability [2], [3], [4]. 

Rice husk ash concrete is eco-friendly, requires less energy to produce, and consists of numerous 

components. In service, it is affected by multiple factors, including elevated temperature in building 

fires, in industries close to furnaces, nuclear power plants, airfield pavements, and jet aircraft blast 

hangers. Machine learning can determine various patterns in the rice husk ash concrete data beyond 

simple analysis. It can provide a better understanding of concrete behavior and evaluate future 

performance, negating the need for extensive laboratory experiments that are expensive, time-

consuming, and contribute to waste generation. 

Previous studies [5], [6], [7] have employed various machine learning techniques to evaluate the 

residual concrete compressive strength following elevated temperature exposure. However, none has 

used the XGBoost to determine RHA concrete residual compressive strength considering the chemical 

composition and fineness of the RHA as input parameters. XGBoost is considered robust, rapid in 

training, and precise. This study improves the understanding of RHA concrete behavior under elevated 

temperatures. The study provides a basis for the algorithm application in other civil engineering data 

sets where the input and output parameters are clearly defined to obtain desired results or predict a given 

outcome as the machine learning algorithm can map patterns of a complex data set.  

Cakiroglu [8] used the tabular generative adversarial network to produce synthetic data, finding 

that augmenting the data set with synthetic data enhanced the performance of machine learning models. 

Nevertheless, the study advocated additional research aimed at generating higher-quality synthetic data. 

Given the significant reliance of machine learning algorithms on data, the present research investigated 

the application of the Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP), 

an improved version of the traditional GAN, to generate continuous numerical synthetic data. This 

innovative methodology offers a fresh perspective for the civil engineering sector in addressing the 

challenges posed by limited data availability, thereby reducing the necessity for costly and labor-

intensive laboratory experiments.  

2. Method  

The research approach encompassed data set collecting, the formulation of the XGBoost model, 

and statistical validation of the model accuracy utilizing mean absolute error, root mean square error, 

and coefficient of determination. An analysis of the importance of the feature was performed to ascertain 

the impact of the input parameters on the result. Synthetic data was generated using the Wasserstein 

Generative Adversarial Network with Gradient Penalty which was contrasted with the real data and 

employed in the XGBoost model. 

2.1 Data Collection 

The data was collected from previous experimental studies by Al-Majidi [9], Umasabor & 

Okovido [10], and Wang [11] which included 64 samples. The gathered data set exhibited high quality 

characterized by its accuracy in representing the pertinent issue, reliability through the absence of 

contradictory information, and completeness, ensuring no duplicates or missing entries. Additionally, 

the data was up to date, possessed an appropriate size, was at least an order of magnitude larger than the 

trainable parameters, demonstrated diversity, and maintained relevance to the subject matter. In contrast 

to deep learning and unsupervised learning algorithms, which necessitate substantial quantities of data 

to discern intrinsic patterns in the data without explicit guidance, XGBoost is a supervised learning 

algorithm utilizing a pre-labeled sample data set for training, allowing it to make predictions while 

iteratively refining its parameters to reduce error. The labeled data sets provide contextual information, 

equipping the model with the target output values necessary for generating accurate predictions. The 

effectiveness of the model is dependent on the availability of well-labeled data and a well-defined model 

objective. The data collected was well labeled, devoid of missing values, exhibited appropriate variance, 

and the volume was adequate for the machine learning model to discern the underlying patterns. The 

variables included the age of the specimen, water-cement ratio, rice husk ash percentage replacement, 

chemical composition of the RHA (silica SiO2, alumina Al2O3, and iron oxide Fe2O3), RHA fineness, 

unheated compressive strength (at room temperature), intensity of the elevated temperature and duration 
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of exposure to elevated temperature. The elevated temperature ranged from 1000C to 8000C. The 

important data set components considered are shown in Table 1. The statistical analysis of the data 

reported in Table 2 reveals a range of variability and diversity. This characteristic facilitates the model’s 

ability to effectively generalize to novel inputs and additional data. 

Table 1. Important Data Set Components 
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Table 2. Data Set Statistics 

Variable Mean Standard 

deviation 

Minim

um 

25th 

Percen

tile 

50th 

Percen

tile 

75th 

Percen

tile 

Maxim

um 

RHA 10.156 8.403 0 5 10 15 30 

SiO2 66.159 36.914 0 84 87.16 87.22 87.22 

Al2O3 0.578 0.456 0 0.38 0.7 0.7 1.35 

Fe2O3 0.911 0.728 0 0.35 1.45 1.68 1.68 

RHA Fineness 52.734 33.273 0 45 75 75 90 

w/c ratio 0.509 0.124 0.3 0.488 0.55 0.6 0.6 

Unheated comp str 41.540 15.991 22 27.2 39.485 50.875 68 

Elevated temp 456.25 221.019 100 200 400 600 800 

Exposure duration 1.688 0.467 1 1 2 2 2 

Age 111 79.963 28 28 59 200 200 

Residual comp str 30.988 19.522 3.3 17.386 25.65 43.88 73 



AIJASET – Vol. 04, No. 03, November 2024. 193-205 

https://doi.org/10.25077/aijaset.v4i3.187 

196 
 

2.2 Model Training and Testing 

The research flow chart is shown in Figure 1. 

 
Figure 1. Research flow chart 

Extreme gradient boosting (XGBoost) is a powerful and scalable machine learning based on 

gradient boosting. Gradient boosting is an ensemble machine-learning technique derivative of the 

Decision Tree algorithm. This technique employs a series of weak/base learners to obtain an arbitrarily 

strong learner, with the fundamental objective of reducing the overall error, referred to as model loss, 

through the iterative addition of learners to the model [12]. XGBoost  effectiveness largely stems from 

its exceptional scalability, allowing it to efficiently handle billions of instances in both distributed and 

memory-listed scenarios while also maintaining rapid performance on individual systems [13].  

The model proposed by Chen & Guestrin [13] gives the predicted result using Equation 1 which 

uses additive functions. 

 

𝑦𝑖̅ = 𝑦𝑖
0 + ƞ ∑ 𝑓𝑘

𝑀
𝑘=1 (𝑋𝑖)                                                             (1) 

 

The term 𝑦𝑖̅ denotes the predicted outcome for the ith sample, Xi represents the feature vector 

associated with that sample, M indicates the total number of estimators, fk refers to the individual 

estimators where k varies from 1 to M each linked to a distinct tree structure, 𝑦𝑖
0 signifies the average 

of the observed values within the training set serving as the initial estimate, and the learning rate is 

denoted as ƞ that plays a crucial role in progressively refining the model while incorporating new trees 

and mitigating the risk of overfitting [14]. 

Training is done in an additive manner; therefore, a kth estimator is added to the model at the kth 

step, and the kth prediction is given by Equation 2. 

 

𝑦𝑖
𝑘 = 𝑦𝑖

(𝑘−1)
+  ƞ𝑓𝑘                                                              (2) 

 

The value of fk is established based on the leaf weights derived from the minimization of the 

objective function associated with the kth tree using Equation 3 [14]. 

 

𝑜𝑏𝑗 = 𝛾𝑇 + ∑ [𝐺𝑗𝜔𝑗 +
1

2
(𝐻𝑗 + 𝜆)𝜔𝑗

2]𝑇
𝑗=1                                            (3) 

 

T represents the total count of leaves in the kth tree, while ωj denotes the weights of the leaves 

with j varying from 1 to T. γ and λ serve as regularization parameters that regulate the complexity of the 
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tree structure, thereby mitigating the risk of overfitting. Gj and Hj correspond to the summation and 

count of residual linked to the jth leaf, respectively [14].   

The kth tree is constructed by partitioning the leaves, beginning with a single leaf, while 

maximizing the gain parameter defined by Equation 4. Following the division, the left leaf is designated 

GL and HL, while the right is assigned GR and HR [14]. 

 

𝑔𝑎𝑖𝑛 =
1

2
[

𝐺𝐿
2

𝐻𝐿+𝜆
+

𝐺𝑅
2

𝐻𝑅+𝜆
−

(𝐺𝐿+𝐺𝑅)2

𝐻𝐿+𝐻𝑅+𝜆
] − 𝛾                                       (4)                             

                                                                             

The model training and testing were done in Python using the scikit-learn machine learning library 

for implementing machine learning models. Jupyter Notebook was used as the integrated development 

environment (IDE) for efficient code development. Hyperparameter optimization was performed to 

determine the most effective hyperparameter settings for enhancing model performance. 

Optuna framework which employs Bayesian optimization with an algorithm called TPE (Tree-

Structured Parzen Estimator) was used for hyperparameter tuning. Iteratively sampling new 

hyperparameters, the TPE algorithm updates its internal probability distributions, assesses performance 

using the objective function, and discloses a hyperparameter combination that it anticipates will produce 

an even better outcome [15].  

The tuning process aimed to reduce the root mean squared error. The model was developed with 

a focus on the following hyperparameters: n_estimators varied between 100 and 1600, max_depth was 

set  from 1 to 11, learning_rate was adjusted within the range of 0.01 to 1.0, subsample values spanned 

from 0.4 to 1.1, colsample_bytree was configured between 0.01 and 1.0, regularization parameters 

included lambda ranging from 1 to 100, alpha from 0 to 11 and gamma from 1 to 11 [12], [14], [16].  

2.3 Performance Evaluation of the Model 

The assessment of the model’s performance was conducted through the application of the 

coefficient of determination (R2) as outlined in Equation 5, the root mean squared error (RMSE) as 

specified in Equation 6, and the mean absolute error (MAE) as described in Equation 7. 

𝑅2 = 1 −
∑ (𝑦−𝑦̂)2𝑛

𝑖=0

∑ (𝑦−𝑦̅)2𝑛
𝑖=0

                                                                       (5)                                                                                                                

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦 − 𝑦̂)2𝑛

𝑖=0                                                                  (6) 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦 − 𝑦̂|𝑛

𝑖=0                                                                      (7) 

                                                                                                                       

y represents the actual value, 𝑦̂ denotes the predicted value, 𝑦̅ signifies the mean of the actual 

value and n indicates the total number of samples in the testing data set. The units for RMSE and MAE 

correspond to those of the output parameter which is MPa in this case. A lower value indicates a more 

precise model prediction. In contrast, R2 is a dimensionless quantity; values approaching 1 signify 

improved predictive accuracy of the model [16]. 

R2 quantifies the extent to which the model’s predictions account for the overall variability 

observed in the target variable. RMSE was employed to compute the average squared deviation between 

the predicted and actual values, effectively imposing a penalty on larger discrepancies through the 

squaring process. The RMSE is sensitive to outliers and is a good indicator of a robust model that can 

handle unseen data. Unlike mean square error, MAE is less sensitive to outliers and quantifies the size 

of the discrepancies between predicted and observed values, disregarding the direction of these errors. 

A lower MAE denotes a better match between the model predictions and the true values, implying that 

the model’s predictions are generally more accurate.  

2.4 Feature Importance Analysis 

The input variables were examined to assess their impact on the model. This was done using 

SHAP values. This prevents the “black box” problem associated with machine learning algorithms 

whereby how the model functions cannot be easily explained.  
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SHAP (Shapely Additive exPlanation) values is a model-agnostic feature importance analysis tool 

proposed by Lundberg & Lee [17] which is designed to elucidate a specific prediction by quantifying 

the contribution of each feature to the prediction. SHAP values employ an explanatory model g that is 

represented as a linear function of binary variables as illustrated in Equation 8. 

 

𝑔(𝑧′) = 𝜙0 + ∑ 𝜙𝑖
𝑀
𝐼=1 𝑧′

𝑖                                                           (8)  

                                                                                                                            

𝑧′ represents the simplified features belonging to the set {0,1}𝑀, M denotes the total number of 

input features, 𝜙𝑖 are the feature attribution values (SHAP values) and 𝑧′
𝑖 are variables indicating a 

feature being observed when 𝑧′
𝑖 = 1 (corresponding feature value is present) and unknown 

(corresponding feature value is absent) when 𝑧′
𝑖 = 0 [18]. 

The SHAP value 𝜙𝑖 attributed to each feature is obtained using Equation 9. 

 

𝜙𝑖 = ∑
|𝑆|!(𝑀−|𝑆|−1)!

𝑀!𝑆⊆𝑁{𝑖} [𝑓𝑥(𝑆 ∪ {𝑖}) − 𝑓𝑥(𝑆)]                                            (9)   

                                                                                                                 

Where 𝑓𝑥(𝑆) = 𝐸[𝑓(𝑥) ∣ 𝑥𝑆], S represents the collection of non-zero indices in z’, 𝐸[ 𝑓(𝑥) ∣∣ 𝑥𝑆 ] 
denotes the expected value of the function given a specific subset S of the input features, M refers to the 

total number of input features, and N encompasses the entirety of the input features [18]. 

2.5 Synthetic Data Generation 

Generative Adversarial Networks (GANs) developed by Goodfellow [19] is a framework used to 

generate synthetic data. It comprises two distinct neural network architectures: the generator and the 

discriminator. The generator produces data that resembles real data by utilizing random noise, whereas 

the discriminator is tasked with distinguishing between this generated data and genuine data. The two 

models operate in a competitive framework, and this adversarial training facilitates their progressive 

enhancement over time.   

The GANs face challenges such as convergence failure and mode collapse. Convergence failure 

is whereby the GANs fail to provide good quality results and mode collapse occurs when the generator 

only focuses on certain modes in the real data and fails to consider the different variations in the data 

distribution thereby producing synthetic data that is not diverse.  

Wasserstein GANs proposed by Arjovsky [20] address these issues of mode collapse and 

convergence in the original GAN by considering the Wasserstein distance as the loss function, in 

contrast to the binary cross entropy that relies on the Jensen-Shannon divergence. The Jensen-Shannon 

divergence quantifies the similarity between the two distributions, exhibits symmetry, and always has a 

value. The WGAN differentiates the disparity between the distribution of real data and that of generated 

data, a measure referred to as the Earth Mover distance which calculates the distance required to move 

the mass of features from one point to another so that the two distributions are similar. The GAN 

classifies the output as either real or fake. In contrast, the WGAN discriminator is designed to assess the 

disparity between the actual and generated distributions, which is why it is commonly termed the critic.  

The WGAN facilitates a more stable learning environment, enhances the convergence of 

gradients, minimizes the occurrence of mode collapse, and yields superior optimal outcomes. The loss 

function of the WGAN is shown in Equation 10. 

 

max
𝑤∈𝑊

𝐸𝑥~𝑝𝑟[𝑓𝑤(𝑥)] − 𝐸𝑧~𝑝(𝑧)[𝑓𝑤(𝑔𝜃(𝑥))]                                                   (10) 

                                                                                    

𝐸𝑥~𝑝𝑟[𝑓𝑤(𝑥)] represents the distribution of real data, 𝐸𝑧~𝑝(𝑧)[𝑓𝑤(𝑔𝜃(𝑥))] denotes the distribution 

of data generated from random noise z, and W signifies the Wasserstein distance [20]. The critic is 

optimized to increase this loss while the generator is optimized to decrease it. 

To ensure the generator gets enough gradient information for training, a gradient penalty is 

introduced in the WGAN as proposed by Gulrajani [21]. The new loss function is defined by Equation 

11. 

𝐿 = E
𝑥̃~𝑃𝑔

[𝐷(𝑥̃)] − E
𝑥~𝑃𝑟

[𝐷(𝑥)] +  𝜆 E
𝑥~𝑃𝑥̂

[(‖∇𝑥̂𝐷(𝑥)‖2 − 1)2]                                (11) 
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The expression E
𝑥̃~𝑃𝑔

[𝐷(𝑥̃)] − E
𝑥~𝑃𝑟

[𝐷(𝑥)] represents the original critic's loss where E
𝑥̃~𝑃𝑔

[𝐷(𝑥̃)] 

corresponds to the generated data and E
𝑥~𝑃𝑟

[𝐷(𝑥)] the real data. 𝜆 E
𝑥~𝑃𝑥̂

[(‖∇𝑥̂𝐷(𝑥)‖2 − 1)2] denotes the 

gradient penalty with λ indicating the gradient penalty coefficient and  𝑥 representing the interpolated 

data given by Equation 12. 

 

𝑥 = 𝜖𝑥 + (1 − 𝜖)𝑥̃                                                            (12) 

 

Synthetic data was produced utilizing WGAN-GP.  The original data was first scaled. Data scaling 

ensures that every feature contributes equally to the model and prevents the dominance of input variables 

with higher values. Normalization was used to scale the data which limits the value of each feature 

between 0 (minimum) and 1 (maximum) using Equation 13 where X’ represents the value of the feature 

after scaling, x denotes the original value of the unscaled feature, xmin indicates the minimum feature 

value and xmax signifies the maximum feature value. 

𝑋′ =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                                                                 (13) 

 

A heuristic approach was used to determine the WGAN-GP network parameters. The WGAN-GP 

was created with a batch size of 64. The batch size specifies how many rows of data will be passed 

through the network in one go (cycle) after which the neural network modifies its weights based on the 

errors. A small batch size makes the process take a long time while a large batch size may reduce the 

model accuracy. For a small data set the number of samples can be taken as the batch size therefore 64 

was used. Epoch represents the number of times data is passed through the network. The number of 

epochs chosen was 200,000. This takes a long time to implement but improves accuracy.  

The Generator and Discriminator networks had 3 layers each: the input, hidden, and output layers. 

The size of the input layer for both the Generator and Discriminator was 11 units (neurons), representing 

the number of features to be produced. The hidden layer units for both networks were set to 512, as an 

increase in neurons introduces complexity, whilst a decrease results in diminished accuracy. The output 

layer for the Generator network had 11 units, which represents the total amount of features produced 

while the output layer of the Discriminator had just one unit as its purpose is to differentiate the data 

produced as either real or fake.  

Layer Normalization, which normalizes all features within each sample was used after the input 

and hidden layer as opposed to the Batch Normalization employed in the original WGAN-GP paper [21] 

which normalizes each feature independently within a batch of samples (mini-batch). Layer 

Normalization was seen to improve training speed and is suitable for small batch sizes as it is 

independent of the batch size.  

The network employs activation functions to identify intricate nonlinear relationships among the 

inputs, transforming them into a more practical output. The generator network employed the Rectified 

Linear Unit (ReLU) activation function across its layers while the Leaky Rectified Linear Unit (Leaky 

ReLU) was used for the discriminator layers. ReLU limits the outputs from the layers to 0 and above 

thereby ensuring that no negative value is obtained from the layers. The neurons are not activated by the 

ReLU function simultaneously, rather they are deactivated only when the linear transformation’s output 

is less than zero. This however may lead to the neurons with a negative bias never getting activated 

resulting in a dead neuron leading to poor network performance as it is unable to learn complex patterns 

in the data. To combat this, Leaky ReLU is employed whereby for the positive outputs it functions just 

like ReLU but for negative outputs instead of returning zero it returns a small negative value proportional 

to the given output preventing the dying ReLU problem. This ensures that all the neurons in the network 

contribute to the output even though they have negative inputs. 

The WGAN-GP model employed the Adam optimizer, featuring a learning rate (α) of 0.0001, a 

decay rate for momentum (𝛽1) of 0 to prevent high weighting for the more recent gradients, and a decay 

rate for squared gradients (𝛽2) of 0.9 which helps to capture the long-term memory of the gradients thus 

a stable estimate of variance. The optimizer adjusts the model’s weights per the gradient derived from 
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the loss function. The gradient penalty coefficient (λ) employed was 10 and the number of critic 

operations during each generator operation (𝑛𝑐𝑟𝑖𝑡) was selected as 5.  

1000 synthetic data points were generated. The evaluation of the synthetic data involved a 

comparison with the original data set, focusing on the mean and standard deviations, as well as the 

minimum and maximum values of the variables. The Mann-Whitney U test was performed to assess the 

similarity between the two data sets. The null hypothesis was that the two samples were obtained from 

the same population. If the p-value obtained from the test is below the significance threshold of 0.05, it 

is permissible to reject the null hypothesis, thereby indicating the two data sets exhibit dissimilarity. The 

Mann-Whitney U test was implemented using the SciPy Python library statistical functions. 

The effectiveness of the synthetic data was assessed by training the XGBoost model using the 

data generated by WGAN-GP and subsequently evaluating it against the original data set. The model 

performance solely using the original data was compared to the model utilizing the combined synthetic 

and original data. 

3. Results and Discussion 

3.1 Performance Evaluation of the Model 

The validation technique employed was the train-test split method. This approach guarantees that 

the model demonstrates effective performance on data that it has not previously encountered, rather than 

solely on the training data set. The process consisted of randomly dividing the data set into two subsets, 

allocating 75% for model training and reserving 25% for testing. The XGBoost model performance 

evaluation metrics for the train and test data set are shown in Table 3.  

 

Table 3. Performance Evaluation Metrics of the XGBoost Model for the Train and Test Set 

Performance Metric Train Set Test Set 

RMSE 1.887 3.351 

R2 0.992 0.939 

MAE 1.420 2.994 

 

The performance evaluation metrics of the training set are superior and of a good fit, as this was 

the data set on which the model was trained. There is not a huge difference between the train and test 

set values, which indicates low variance therefore the model is robust and can perform well on new 

unseen data, not just the data it was trained on. The low RMSE value indicates that the model can handle 

outliers well. RMSE penalizes large errors due to the squaring and aims to minimize the impact of 

outliers. The low MAE values suggest that the model demonstrates a good fit, indicating that the 

predictions are, on average, close to the actual values. The high R2 value for both the training and testing 

phases indicates that the model effectively encapsulates the fundamental patterns present within the data.   

For the unoptimized model, performance evaluation metrics RMSE, R2, and MAE obtained were 

5.505, 0.835, and 4.440 respectively. In contrast, the metrics obtained by optuna hyperparameter tuning 

were 3.351, 0.939, and 2.994. This indicated a great improvement in model performance by 

hyperparameter tuning. From the optuna hyperparameter search the ideal hyperparameter values were 

the number of trees (n_estimators) 541, subsample 0.993, max_depth 6, learning rate 0.07, lambda 2, 

gamma 1, colsample_bytree 0.2, and alpha 0.  

3.2 Feature Importance Analysis 

The summary plot of the shap values for the features is presented in Figure 2. The order of the 

features on the plot provides the ranking of the importance of the features to the model prediction; in 

this case, the elevated temperature has the highest effect while Fe2O3% has the least impact. Each feature 

sample is depicted as a dot with the color serving to denote its intensity. A red dot signifies a high feature 

value, whereas a blue dot represents a low feature value. The horizontal placement of the dots relative 

to the origin of the plot reflects the influence of various features on the model’s output. Features located 

on the left side of the plot signify a detrimental effect on the predicted output, while those on the right 
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side denote a beneficial impact. Furthermore, the extent of deviation from the origin correlates with the 

magnitude of the feature’s influence on the model’s predictions.   

 

Figure 2. SHAP Values Summary Plot 

Dividing the data set into two distinct subsets, one for training the model and the other for 

evaluating its predictive accuracy on novel observations, facilitated an assessment of the model’s ability 

to generate accurate predictions with unfamiliar data. Consequently, this approach enables the model to 

effectively recognize patterns in unseen data, thereby enhancing its inferential capabilities. From the 

SHAP values summary plot of the model predictions on the test data, a high elevated temperature leads 

to a low predicted residual compressive strength and vice versa. The increase in temperature leads to the 

breakdown of calcium silicate hydrate (C-S-H) gel, which is responsible for the compressive strength 

of concrete. This decomposition results in the formation of cracks between aggregates and cement paste. 

The unheated compressive strength is directly proportional to the residual compressive strength; 

as the former decreases, so does the latter. Concrete that initially exhibits low compressive strength is 

likely to demonstrate inadequate performance following exposure to high temperatures, resulting in 

diminished residual compressive strength. 

The compressive strength of concrete incorporating rice husk ash is positively correlated with a 

reduction in the water-cement ratio. An elevated water-cement ratio is associated with a diminished 

anticipated residual compressive strength. Conversely, a lower water-cement ratio results in concrete 

that exhibits a greater amount of hydrated calcium silicate hydrate gel and cement particles. Therefore, 

when subjected to high temperatures, the dehydration of the concrete is relatively mild, allowing the 

material to preserve its structural integrity, resulting in only a minor decrease in compressive strength. 

However, care should be taken as a low water-cement ratio may cause concrete workability issues. 

Concrete compressive strength increases with age. With an increase in age, there is an increase in 

the degree of hydration, improving concrete compressive strength. The hydration process is typically 

accelerated by initial exposure to high temperatures, resulting in a preliminary rise in compressive 

strength. Nevertheless, continued exposure to elevated temperatures subsequently diminishes the 

compressive strength. The compressive strength of aged concrete experiences a more significant decline 

following exposure to high temperatures which can be attributed to the concrete’s microstructure 

becoming more complex with age and the increase in cement paste which is similar to what was reported 

by Seyam & Nemes [22]. Consequently, older concrete specimens are more susceptible to a significant 

reduction in compressive strength after being subjected to elevated temperatures therefore higher age 

leads to a lower predicted residual compressive strength by the model.  
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Higher silica content increases concrete compressive strength due to more formation of the 

calcium silicate hydrate gel. Elevated temperature causes the decomposition of the C-S-H gel thus 

reducing the concrete compressive strength. This phenomenon accounts for the higher predicted residual 

strength caused by high silica content. The lower the RHA% the lower the value of the predicted residual 

strength. This can be ascribed to the fact that the surface of RHA is multilayered, angular, and 

microporous, thereby after high-temperature exposure the concrete made with RHA is more compact 

than OPC concrete hence reduction in compressive strength is less severe. 

Finer RHA leads to a lower predicted residual compressive strength. Cementitious material with 

fine particles has a greater surface area, thereby increasing the hydration process for forming C-S-H, 

causing increased compressive strength. However, in the case of alkali-aggregate, the finer the 

cementitious material the more aggressive the reaction between the two, expediting the hydration 

process and may cause shrinkage of the concrete, therefore prone to cracking and reduction in 

compressive strength. 

High alumina content causes a lower predicted residual compressive strength. The alumina in 

concrete assists in lowering the setting time of concrete, speeding up the reactions but reducing strength. 

Alumina acts as a filler, improving the cement paste's microstructure by decreasing the pore volume and 

increasing the compressive strength of concrete. It also acts as an activator promoting pozzolanic 

reactions. Excessive alumina, beyond the amount necessary for reaction with lime during hydration, 

leads to the leaching out of silica, which in turn results in compressive strength reduction as observed 

by Nazari [23]. Longer exposure duration of concrete to elevated temperature causes a lower predicted 

residual strength due to greater decomposition of the C-S-H gel.  

High iron oxide content leads to low predicted residual strength and vice versa. However, the 

effect is negligible. Iron oxide functions as a filler, occupying the voids present in the cement paste 

increasing density, and improving the microstructure. Iron oxide is also highly reactive, quickening the 

hydration process and causing early strength gain in the concrete. Alumina and iron oxide contribute 

less to the compressive strength of concrete than silica.  

The most significant features influencing the model were the elevated temperature, unheated 

compressive strength, and the water-cement ratio. In the temperature range of 2000C to 4000C, the 

compressive strength of RHA concrete is minimally reduced, and the predicted residual compressive 

strength remains comparatively high. However, once the temperature exceeds 4000C, the residual 

compressive strength significantly declines. The residual compressive strength of RHA concrete 

diminished as the water-cement ratio increased, with a notably more pronounced reduction occurring 

beyond the 0.55 mark. The features with the least effect on the model were the exposure duration, 

Al2O3%, and Fe2O3%.  

3.3  Evaluation of Generated Synthetic Data 

The generated synthetic data was like the original data as seen from the comparison of the 

features’ means, standard deviations, minimum, and maximum values shown in Table 4. The results of 

the Mann-Whitney U test revealed p-values for all features that exceeded the significance threshold of 

0.05, suggesting that the two data sets exhibit similarity. 

The XGBoost model underwent training using synthetic data and was subsequently evaluated on 

the original data set yielding RMSE, R2, and MAE values of 0.065, 0.945, and 0.053 respectively. These 

results indicate that the synthetic data effectively represented the underlying patterns present in the 

original data set. 

The combined dataset of both the original and synthetic data with a train-test split of 75% 

(training) to 25% (testing) gave an RMSE value of 0.071 representing a significant enhancement from 

the original value of 3.351, an improved R2 value of 0.941 from a previous initial value of 0.939, and an 

MAE value of 0.053 which is an improvement from 2.994. Therefore, incorporating the synthetic data 

led to a notable performance improvement of the model. 
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Table 4. Comparison of the Original and Synthetic Data Statistics 

Feature Mann 

Whitney 

U Test p 

Value 

Mean Standard    

Deviation 

Min Max 

Orig Syn Orig Syn Orig Syn Orig Syn 

RHA% 0.547 0.339 0.345 0.280 0.284 0.000 0.000 1.000 1.029 

SiO2% 0.100 0.759 0.751 0.423 0.423 0.000 0.000 1.000 1.017 

Al2O3% 0.846 0.428 0.417 0.338 0.330 0.000 0.000 1.000 1.021 

Fe2O3% 0.732 0.542 0.524 0.433 0.427 0.000 0.000 1.000 1.022 

RHA Fineness 0.524 0.586 0.574 0.369 0.365 0.000 0.000 1.000 1.021 

w/c ratio 0.084 0.698 0.707 0.412 0.401 0.000 0.000 1.000 1.023 

Unheated 

compressive 

strength 

0.852 0.425 0.420 0.348 0.336 0.000 0.000 1.000 1.012 

Elevated 

temperature 

0.907 0.509 0.499 0.316 0.304 0.000 0.000 1.000 1.020 

Exposure 

duration 

0.128 0.688 0.676 0.467 0.468 0.000 0.000 1.000 1.022 

Age 0.882 0.483 0.479 0.465 0.458 0.000 0.000 1.000 1.046 

Residual 

Compressive 

strength 

0.975 0.397 0.400 0.280 0.277 0.000 0.000 1.000 1.006 

4. Conclusion 

The XGBoost demonstrates a high level of accuracy in forecasting the residual compressive 

strength of RHA concrete following exposure to elevated temperatures. It saves on time and expenses 

associated with extensive laboratory experiments. To improve the performance of the XGBoost 

algorithm, focus should be placed on the learning rate, number of estimators, and lambda 

hyperparameters by widening their search space and using default values for the other hyperparameters. 

The key factors influencing predictions made by the XGBoost model include the elevated 

temperature, the unheated compressive strength, and the ratio of water to cement. The exposure duration, 

alumina content, and iron oxide have minimal effect on the prediction. A case can be made for their 

exclusion from the model creation which may reduce computation time and improve model 

performance. Increasing the dataset by augmenting it with synthetic data created by WGAN-GP 

improved the performance of the XGBoost machine learning algorithm. Although WGAN-GP has 

primarily been applied to text and image augmentation, the current study has demonstrated its utility in 

continuous numerical data instances. This proves useful in cases where data is scarce and the required 

data may take a long time to collect, such as in the study of the creep behavior of concrete and durability.  

Field studies should be conducted to get unregulated data different from controlled experimental 

data. Other than the generation of synthetic data through GANs, techniques for dimensionality reduction, 

including principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE), 

can be used to manage sparse datasets by facilitating the transformation of models into a lower-

dimensional space.    
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