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Abstract— Plant disease detection is essential for improving agricultural productivity. Deep 

learning models have shown great potential in identifying plant diseases because they can 

leverage large datasets. However, while efficient, traditional machine learning methods often 

face challenges with generalization when trained on small datasets using basic features like 

shape, color, and texture. A promising approach to overcome this is the combination of deep 

feature extraction with machine learning classification, enabling more accurate disease 

detection. Traditional classifiers trained on smaller datasets can still offer viable solutions in 

resource-limited environments. By extracting critical features and employing classical 

techniques, these models remain practical for constrained settings. Integrating deep learning 

models with traditional methods allows for better handling of disease variability across plants 

and conditions, enhancing adaptability and accuracy. This review explores deep learning and 

traditional machine learning approaches for feature extraction and segmentation in plant disease 

detection. It highlights how combining deep feature extraction with machine learning 

classification improves accuracy and addresses the challenges posed by limited datasets. The 

potential of multimodal techniques for enhanced detection is also discussed, leading to more 

robust and scalable solutions for plant disease management. 
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1. Introduction 

Effective plant disease detection is vital for precision agriculture, significantly impacting plant 

health and productivity. With the rise in disease outbreaks, timely detection has become crucial for 

accurate diagnosis, control, and minimizing damage. Early identification enables targeted treatments 

and helps prevent substantial economic losses [1] identified essential metrics, such as disease 

incidence (proportion of affected plants), severity (extent of damage), and consequence (impact on 

yield).  Computer vision techniques have revolutionized plant disease detection, surpassing traditional 

human methods, often labor-intensive and subjective [2]. Automated systems now employ machine 

learning to analyze plant images, identifying patterns based on features like texture, color, and shape. 

For instance, [3] demonstrates how classifiers detect diseases by comparing extracted features with 

labeled datasets. Despite these advances, a gap remains in the generalizability of these models, 

especially in resource-constrained environments. Deep learning models, particularly convolutional 

neural networks (CNNs), offer improved accuracy by processing large datasets and detecting subtle 

patterns, but computational resources often limit their application. This research addresses these 

challenges by exploring how deep learning models can effectively integrate with traditional methods 

to enhance plant disease detection, ensuring better scalability and performance. 

 

https://creativecommons.org/licenses/by-sa/4.0/


AIJASET – Vol. 04, No. 03, November 2024. 206-223 

https://doi.org/1010.25077/aijaset.v4i3.182 

207 

2. Plant Disease Segmentation  

Plant disease segmentation is crucial in computer vision for isolating diseased areas in plant 

images, which improves diagnostic precision. Various techniques depend on image characteristics and 

disease patterns, including thresholding, region growing, the watershed algorithm, edge-based 

segmentation, regional methods, and clustering. Ref [4] illustrate that thresholding is a basic but 

effective method that classifies pixels based on intensity relative to a threshold value, distinguishing 

diseased regions from healthy ones. It can be applied globally, with a single threshold for the whole 

image, or locally, with different thresholds for various image regions. Ref [5] argue that the algorithm 

generates a pixel intensity histogram, selects a threshold (e.g., Otsu’s method), and classifies pixels as 

foreground or background based on this value. While effective for images with clear contrasts, 

thresholding struggles with uneven illumination or subtle intensity variations.  As shown by [6], region 

growing is another pixel-based technique that begins with seed points and expands to include 

neighboring pixels based on similarity criteria such as intensity, color, or texture. This method 

involves selecting seed points manually or automatically and adding neighboring pixels that meet a 

homogeneity criterion until no more can be included. This technique is helpful for segmenting regions 

with similar properties but may require careful tuning of parameters to handle varying image 

conditions effectively. The region method's strength lies in creating connected regions that match 

actual diseased areas. Still, its accuracy depends on seed point selection and homogeneity criteria. 

Poor seeds can cause over- or under-segmentation, as [7] illustrated, especially in noisy or variably 

intense images. Automatic seed selection and post-processing can help refine the results. This method 

excels with continuous diseased patches, like early blight, but can struggle with irregular or diffuse 

disease patterns. 

The watershed algorithm uses a topological approach, treating pixel intensities as elevation. 

Local minima are identified as catchment basins, which flood until they meet at watershed lines 

forming region boundaries. [8] correctly points out that the method can effectively treat diseases with 

clear boundaries but can suffer from over-segmentation in noisy images. Pre-processing, such as 

Gaussian smoothing or marker-based control, can reduce noise and improve segmentation. Edge-based 

segmentation detects boundaries between regions with different intensities, ideal for diseases with 

clear lesions. Ref [9] shows that techniques like the Canny edge detector involve smoothing, gradient 

computation, non-maximum suppression, double thresholding, and edge tracking. These methods 

work well for distinct lesions but are noise-sensitive and may require additional pre-processing.  

Regional methods, as in the works of [10] such as split-and-merge algorithms, segment images based 

on homogeneity within regions, iteratively splitting non-homogeneous areas, and merging similar ones 

based on pixel intensity variance. In split-and-merge algorithms, an image is divided into regions, 

which are then evaluated for homogeneity based on criteria like variance or mean intensity. The ref 

[11] approach demonstrates that non-homogeneous regions are split while adjacent homogeneous 

regions are merged, continuing iteratively until homogeneity is achieved. These methods work well for 

diseases affecting large, uniform areas, such as leaf rust, but may struggle with irregular or complex 

patterns. 

Clustering techniques like k-means and fuzzy c-means (FCM) are used for unsupervised 

segmentation by grouping pixels based on features like intensity, color, or texture. K-means partitions 

pixels into k clusters, recalculates centroids, and repeats until convergence, as [12] discusses. FCM 

assigns membership probabilities to pixels, allowing for more flexible segmentation, especially where 

boundaries are unclear. Clustering is versatile for various plant diseases, particularly those with subtle 

color or texture changes, but requires careful parameter tuning and sometimes post-processing for 

refinement. 

3. Detection Feature Extraction Techniques 

Sdda Feature extraction is essential in plant disease detection, focusing on identifying key 

attributes that differentiate healthy from diseased plants; as [13] also elaborates, it involves extracting 

relevant features such as color, texture, shape, and patterns. These features play a vital role in ensuring 

accurate detection. Techniques such as color analysis, texture analysis, shape-based, and frequency-

domain methods contribute significantly to disease identification. 
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3.1 Detection of Diseases Using Color Analysis 

Sadasd Color analysis is pivotal in plant disease detection, especially when identifying 

discoloration caused by various diseases. Color is often one of the earliest visible symptoms, and 

analyzing color variations can provide critical information about the plant's health. According to [14], 

common color spaces like Red-Green-Blue (RGB), Hue-Saturation-Value (HSV), and CIELAB (LAB) 

are frequently used to detect these changes, with HSV and LAB being particularly robust against 

variations in lighting conditions. Ref [15] demonstrates that RGB is an additive color model where 

colors are created by combining different intensities of red, green, and blue light. Each component can 

range from 0 to 255, with (255, 255, 255) producing white and (0, 0, 0) resulting in black. LAB, which 

separates lightness from color-opponent dimensions, further refines this analysis, helping to 

differentiate healthy from diseased tissues under various conditions. 

Algorithms such as color histograms, moments, and coherence vectors are commonly employed 

to analyze these color distributions. Color histograms, as shown in the works of [16] measure the 

distribution of color intensities in an image and are useful in detecting shifts in plant tissue color due 

to disease. Color moments, which include mean, variance, and skewness, provide a statistical approach 

to capturing the overall color changes, while coherence vectors, as illustrated by [17], focus on 

identifying coherent regions of similar color, aiding in segmenting diseased areas. This multi-

dimensional approach to color analysis has demonstrated enhanced accuracy, as in the works of [18] in 

disease detection, by effectively distinguishing healthy and diseased plant regions through robust color 

feature extraction. 

3.2 Texture-Based Disease Detection 

Texture-based disease detection is highly effective for diagnosing plant diseases by quantifying 

surface characteristics and identifying subtle changes that may not be readily visible through color or 

shape alone. This method analyzes the spatial arrangement of pixels, which proves useful for diseases 

that alter plant textures, such as fungal infections, bacterial blight, or viral diseases [19]. 

One widely used technique is the Gray-Level Co-occurrence Matrix (GLCM), which calculates 

how often pairs of pixel intensities occur at a specific distance and direction. GLCM, as shown in the 

works of [20] captures statistical texture features like contrast, correlation, energy, and homogeneity, 

making it a valuable tool for differentiating healthy areas from diseased ones. For instance, GLCM can 

identify surface roughness in diseases like powdery mildew or rust by analyzing texture patterns. 

Another critical method is Local Binary Patterns (LBP), which assigns binary values to each pixel 

based on the intensities of neighboring pixels. This results in a texture descriptor that summarizes local 

texture variations. Ref [21] illustrate that LBP is particularly effective for detecting subtle texture 

changes caused by diseases like mosaic virus or bacterial leaf blight. Its computational efficiency and 

robustness against lighting variations make it suitable for real-time applications in disease detection. 

Gabor filters offer another texture-based approach, analyzing textures at multiple scales and 

orientations through a Gaussian function modulated by a sinusoidal wave. These filters detect 

repetitive or directional texture patterns associated with fungal infections. For example, Gabor filters, 

as discussed by [22] can identify spore clusters in rust diseases or powdery spores from downy 

mildew.  Additionally, the wavelet transforms provide a multi-resolution analysis by decomposing an 

image into various frequency components at different scales. This method is particularly effective for 

detecting coarse and fine-grained textures in plant diseases. For example, it can capture large-scale 

rust patterns and fine-grained symptoms of bacterial blight. These texture features like Contrast, 

Correlation, Energy, Homogeneity, Entropy, Root Mean Square (RMS), Variance, Smoothness, 

Kurtosis, and Skewness offer insights into the texture patterns of plant tissues, which can indicate 

various diseases. Contrast measures the intensity difference between neighboring pixels in an image. It 

quantifies the amount of local variation or edge strength in the texture, which can be crucial for 

detecting diseases that cause pronounced changes in the appearance of plant tissues. The contrast can 

be presented in equation (1). 

    (1) 
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P (i, j) represents the probability of the pixel pair (i, j) occurring in the image. High contrast 

values indicate significant differences in pixel intensities, which can highlight areas affected by 

diseases like powdery mildew or bacterial blight, where infected regions often exhibit sharp 

boundaries and varying intensities. The ability to measure and analyze these variations helps identify 

and quantify disease severity, as shown in the works of [23]. 

Correlation assesses the degree to which pixel values are linearly related to their neighbors. As 

[20] also elaborates, this feature captures the dependency between neighboring pixels and is useful for 

detecting diseases that alter the structural relationships within plant tissues, and this can be represented 

as in (2): 

     (2) 

Where µi and µi are the means of pixel values for rows and columns, and σi and σj are their standard 

deviations. High correlation values suggest that neighboring pixels have similar intensities, which is 

useful for detecting diseases that produce consistent texture patterns. For instance, diseases that cause 

uniform discoloration or patterning in plant tissues will result in higher correlation values. 

Energy (or Angular Second Moment) quantifies the uniformity or regularity of texture by 

measuring the sum of the squared elements in the GLCM. As shown by [24] a higher energy value 

indicates a more uniform and consistent texture, while lower values suggest more complex textures. 

This can be shown in (3). 

       (3) 

Energy is useful for detecting diseases that produce uniform texture changes across plant surfaces. For 

example, [25] breaks down fungal infections that spread uniformly and can be identified by analyzing 

areas with high energy values. The feature highlights regions where the texture remains consistent, 

which can help differentiate between healthy and diseased tissues. 

Homogeneity measures the closeness of the distribution of elements in the GLCM to the 

diagonal, reflecting the smoothness of the texture as in (4). 

        (4)     

Where (i – j)2 is the squared difference between the pixel values. Higher homogeneity, as [26] argues, 

indicates smoother textures, which can be useful for identifying diseases that create relatively smooth 

or uniform texture changes. For example, diseases that cause subtle changes in texture, such as some 

viral infections, may exhibit higher homogeneity values. 

Entropy measures the amount of information or disorder in the texture. It reflects the 

randomness or complexity of the texture and is calculated as in (5). 

           (5) 

Entropy provides insight into the texture's complexity, with higher values indicating more 

chaotic or irregular patterns. Lhermitte et al. (2022) demonstrate that this feature is handy for detecting 

diseases that cause irregular and unpredictable texture changes. For instance, complex infections with 

varied symptoms may result in higher entropy values, making it easier to identify such diseases. 

Root Mean Square (RMS) quantifies the deviation of pixel values from the mean, offering a 

measure of texture roughness or energy. This can be demonstrated as in (6). 

       (6) 
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Where μ is the mean of the pixel values, RMS is useful for detecting diseases that increase the 

roughness or variability of plant textures. For example, infections that cause significant texture 

distortions or irregularities can be identified by analyzing areas with high RMS values. 

Variance measures the spread or dispersion of pixel values around the mean. It is calculated 

by [14]  as in (7). 

         (7) 

Where μ is the mean pixel value, variance helps detect diseases that cause significant changes in 

texture variability. Higher variance values indicate greater texture irregularity, as shown in the works 

of [20] which can indicate disease-induced texture changes, such as those caused by bacterial or fungal 

infections. 

Smoothness quantifies the texture's uniformity by assessing the amount of pixel value 

variance. It is calculated as in equation (8). 

       (8) 

Where variance is the pixel value dispersion, smoothness is inversely related to variance, as [27] 

elaborated, with higher values indicating more uniform textures. This feature helps identify diseases 

that reduce texture roughness or create smooth, even areas on plant surfaces. 

Kurtosis measures the "tailedness" or peakiness of the pixel intensity distribution [28], note 

that it indicates whether the distribution has heavy or light tails and is calculated as in (9). 

       (9) 

where σ is the standard deviation of pixel values. High kurtosis values, as shown in the works of [29] 

indicate sharp peaks in the distribution, which can indicate specific disease symptoms that cause 

pronounced texture features. For example, diseases that create distinct, localized lesions may exhibit 

higher kurtosis values. 

Skewness measures the asymmetry of the pixel intensity distribution. It reflects whether the 

texture is skewed towards higher or lower intensity values and is calculated as in (10). 

      (10)  

where σ is the standard deviation. Positive skewness indicates a distribution with a tail towards higher 

intensities, while negative skewness indicates a tail towards lower intensities.[30] note that 

skewedness helps detect diseases that cause asymmetrical texture changes or distortions in plant 

tissues. 

3.3 Detection of Diseases Using Shape Features 

Shape features are essential for diagnosing plant diseases by examining geometric properties 

and structural changes in plant tissues. Unlike texture-based methods like in the works of [31] shape-

based approaches focus on the morphological alterations caused by diseases. Key techniques include 

contour analysis, area, and perimeter measurements, and shape descriptors such as Hu Moments and 

Fourier Descriptors. 

Contour Analysis involves detecting the boundaries of diseased regions to understand their 

shape and structure. Techniques like the Canny edge detector and Sobel operator, as in [32] are 

commonly used for edge detection, highlighting significant intensity changes. After identifying 

contours, geometric properties like shape and size are analyzed. For instance, bacterial blight often 
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causes lesions with distinct edges, which can be quantified to assess infection severity and track 

disease progression. Advanced methods, as in [33] like active contour models in refining contours 

dynamically for better accuracy. Area and Perimeter Measurements quantify the extent of diseased 

regions by calculating lesions' size and boundary length. Area is measured by counting pixels within 

the contour, as shown by [34] while perimeter measures the boundary length. These metrics are crucial 

for evaluating disease impact and progression. For example, fungal infections like Aspergillus or 

Fusarium, as [35] demonstrate, cause expanding lesions whose size changes can be tracked over time 

to assess disease development and control measures. 

Shape descriptors provide quantitative representations of shapes, aiding detailed analysis and 

classification. Key descriptors include Hu Moments, a set of seven invariant descriptors described by 

[36] that capture shape regardless of scale, rotation, and translation. These descriptors are useful for 

distinguishing disease-induced shapes with consistent characteristics despite variations in size or 

orientation. Hu Moments have been applied to various plant diseases, including leaf spot diseases and 

fungal infections, as in the works of [37]. On the other hand, Fourier Descriptors present shape 

contours in the frequency domain by applying the Fourier Transform to contour data, decomposing 

shapes into frequency components. They are effective for analyzing complex or periodic shapes 

caused by specific pathogens. Researchers can identify and classify diseases based on distinctive 

contour characteristics by examining frequency patterns, as shown by [38]. Combining these shape 

analysis techniques with other methods enhances disease detection and classification, even in 

challenging conditions. Table 1. Summarizes the methods of feature extraction used for plant 

disease detection:  

Table 1. Feature Extraction Methods 

Feature 

Extraction 

Method 

Description Techniques 

Used 

Application in 

Disease 

Detection 

Advantages Disadvantages 

Color 

Analysis 

Focuses on 

identifying 

color variations 

in plant tissues 

caused by 

diseases. 

- Color spaces: 

RGB, HSV, 

LAB.  

- Color 

histograms, 

moments, 

coherence 

vectors. 

- Identifies 

discoloration 

in plant 

tissues.  

- Detects early 

visible 

symptoms. 

- Robust 

against 

lighting 

variations 

(HSV, LAB).  

- Simple and 

fast. 

- Sensitive to 

noise.  

- Limited to 

visible changes. 

Texture-

Based 

Analysis 

Analyzes 

surface 

characteristics 

and spatial 

arrangements 

of pixels. 

- GLCM: 

Contrast, 

Correlation, 

Energy, 

Homogeneity.  

- LBP: Local 

texture 

variations.  

- Gabor Filters: 

Multi-scale 

texture patterns.  

- Wavelet 

Transforms: 

Multi-

resolution 

texture 

analysis. 

- Identifies 

subtle texture 

changes due to 

diseases like 

fungal 

infections and 

blight. 

- Effective 

for diseases 

altering 

textures.  

- Can capture 

fine-grained 

texture 

changes. 

- 

Computationally 

intensive.  

- May require 

high-quality 

images. 

Shape-

Based 

Analysis 

Examines 

geometric 

properties and 

- Contour 

analysis: 

Detects 

- Detects 

changes in 

plant structure 

- Invariant to 

scale, 

rotation, and 

- Less effective 

when shapes are 

irregular or 
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structural 

changes in 

plant tissues. 

boundaries.  

- Area and 

Perimeter 

measurements: 

Quantifies 

lesion size.  

- Shape 

descriptors: Hu 

Moments, 

Fourier 

Descriptors. 

caused by 

diseases like 

bacterial blight 

or fungal 

infections. 

translation 

(Hu 

Moments).  

- Good for 

analyzing 

lesion 

progression. 

complex.  

- Requires clear 

contour 

extraction. 

 

3.4 Models for Feature Extraction 

Learning and extracting features from images are essential for improving model performance in 

plant disease detection. Various models, both deep learning and traditional machine learning, as 

illustrated by [39] offer different capabilities and limitations when applied to this task. CNNs are 

fundamental for image analysis, excelling in automatically learning hierarchical features from data. 

They consist of layers that detect local features, such as edges and textures, through convolution, while 

pooling layers reduce the dimensionality of feature maps, controlling overfitting and enhancing 

computational efficiency. CNNs are particularly effective, as demonstrated by [40] for recognizing 

complex patterns in plant diseases. Yet, their computational cost can be high when working with large 

datasets and detailed features. 

GoogleNet improves CNN efficiency by utilizing Inception modules, which process multi-scale 

features through different-sized convolutional filters. This capability makes GoogleNet, as shown by 

[41] highly adept at capturing subtle morphological changes in plants. The inclusion of auxiliary 

classifiers connected to intermediate layers enhances training stability and accuracy, making it a strong 

candidate for plant disease detection tasks requiring precision. However, the complexity of 

GoogleNet’s architecture, as evaluated by [42] can increase training time and demand more 

computational resources than simpler models like AlexNet. AlexNet, despite being an earlier model 

and applied by [43] introduced significant innovations like Rectified Linear Units (ReLU), dropout 

regularization, and data augmentation, improving robustness and convergence speed. While it lacks 

the efficiency of newer architectures as in the works of [44] AlexNet remains effective for moderate-

sized datasets in plant disease detection, though its ability to handle larger, more complex tasks is 

limited. 

ResNet addresses a key challenge in deep learning: the vanishing gradient problem. By 

introducing residual connections that allow layers to bypass one another, ResNet, as [40] 

demonstrates, enables the training of very deep networks without degradation in performance. This 

characteristic makes it well-suited for extracting fine-grained details necessary for plant disease 

detection. Nonetheless, ResNet's depth can lead to high computational costs, which may be prohibitive 

in mobile or resource-constrained environments. DenseNet further enhances feature extraction by 

connecting each layer to all previous layers, promoting feature reuse and improving information flow, 

as described by [45]. This dense connectivity helps alleviate issues such as the vanishing gradient and 

makes DenseNet particularly effective for identifying subtle variations in plant diseases. However, the 

dense connections increase the computational demands, which can be a drawback in real-time or 

mobile applications. 

MobileNet offers an efficient solution for plant disease detection in resource-constrained 

environments, such as mobile devices. Employing depthwise separable convolutions as in the works of 

[46] MobileNet reduces computational costs while maintaining adequate performance. This model is 

ideal for real-time applications, although its accuracy may not reach the levels of more 

computationally intensive models like DenseNet or ResNet. [47] argue that EfficientNet balances 

performance and efficiency through compound scaling, which uniformly adjusts the model’s depth, 
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width, and resolution. This model strikes a good compromise between accuracy and resource usage, 

making it highly adaptable for plant disease detection across various platforms, from high-

performance systems to lower-resource environments. However, optimizing the compound scaling can 

require significant tuning. 

In addition to deep learning models, traditional machine learning methods such as Support 

Vector Machines (SVM), Random Forests, and k-nearest Neighbors (k-NN) are also employed in plant 

disease detection, as [48] also confirms. SVMs are effective for classification, particularly in handling 

non-linear relationships, making them valuable for detecting plant diseases by learning discriminative 

features. Random Forests, an ensemble method, combines multiple decision trees to improve accuracy 

and robustness, as [49] illustrates, which is particularly useful for managing noisy and imbalanced data 

commonly found in plant disease datasets. Lastly, k-NN assigns a class to a data point based on its 

nearest neighbors and is effective for recognizing patterns, although it becomes less efficient with 

large datasets. While CNN-based models and their variants demonstrate high effectiveness in feature 

extraction for plant disease detection, they come with limitations. Models such as ResNet and 

DenseNet are computationally intensive and may not be suitable for environments with limited 

resources. In contrast, models like MobileNet [50] and EfficientNet [44] are designed to handle such 

constraints but may not achieve the same level of accuracy in highly complex tasks.  

 

 

3.5 Challenges in the Detection 

The intelligent detection of plant diseases encounters several significant challenges. One of the 

foremost issues is related to data quality and quantity. Machine learning models require large, high-

quality labeled datasets to function effectively, but obtaining and labeling images of plant diseases is 

both labor-intensive and costly. [51] correctly note this often results in a dataset lacking diversity and 

impairs a model’s ability to generalize across different plant species and disease conditions. Inaccurate 

labeling and data imbalance, where certain diseases are underrepresented, exacerbate this problem, 

leading to models that may perform poorly in detecting fewer common diseases. Another challenge is 

model generalization. Deep learning models are prone to overfitting, where they excel on training data 

but fail to perform well on new, unseen data. This issue is particularly pronounced in deep learning 

architectures, as described by [52] with numerous parameters that may memorize the training data 

rather than learn generalizable features. Models trained on data from specific geographical regions, as 

in the works of [53] might not adapt well to different regions or seasons due to variations in plant 

varieties, environmental conditions, and disease manifestations. 

As [54] explained, environmental variability further complicates disease detection. Variations in 

lighting conditions, such as shadows, glare, and differences in light intensity, can alter the appearance 

of plant features and disease symptoms, making accurate detection challenging. Additionally, 

background noise from soil or other plants, as discussed by [55] and inconsistencies in camera angles 

and resolutions can obscure or distort disease symptoms, affecting the model’s ability to learn and 

predict accurately. Computational constraints also present a hurdle. Deep learning models, particularly 

those with complex architectures, require substantial computational resources for training and 

inference. Real-time processing is crucial for practical applications, such as in-field disease detection, 

which demands efficient and quick predictions. Optimizing models like in the works of [56] for 

deployment on mobile or edge devices with limited computational resources and managing energy 

consumption, especially for battery-operated devices, is a significant challenge. 

Lastly, integrating multi-modal data adds another layer of complexity. As [57] shows, 

combining data from diverse sources, such as images, sensors, and environmental measurements, 

requires sophisticated data fusion techniques. Discrepancies between different data modalities and 

managing various data formats complicate the analysis and can lead to inaccurate or incomplete 

disease detection. Table 2. shows a summary of plant disease detection datasets.  

 



AIJASET – Vol. 04, No. 03, November 2024. 206-223 

https://doi.org/10.25077/aijaset.v4i3.182 

214 
 

Table 2. Summary Of Plant Disease Detection Datasets 

Dataset Name Image 

Acquisition 

Type of Plant Number of 

Images 

Number of 

Classes 

Scaling  Ref 

Tomatoes Internet Tomatoes 2500 4 Varying [58] 

Plantdoc Internet images Multiple 

plants 

2,598 27 Varying [59] 

Pdd271 Field Multiple 

plants 

220,592 271 224 224 [60] 

Wfd2020 Internet, ICLR  Wheat 

Fungi 

2414 5 512 × 512  [61] 

Cropdeep 

Dataset 

Field Multiple 31,147 31 1000 × 1000  [3] 

Cassava Field Set up Cassava 6,256 5 224 × 224 [62] 

Citrus Kaggle, 

Plantvillage and 

internet 

Citrus 2950 6 256x256 [63] 

Ccmt Dataset Field Multiple 102,976 22 Varying [64] 

Bracol Laboratory Coffee 1,747 6 224x224 [65] 

Certh Grape 

Dataset 

Field Grape 9,832 3 Not specified [66] 

Diamos Field Pear 3,505 4 224 × 224 × 

3 

[67] 

Paddy Field Field Rice 50,730 Refined 4 512 × 512 [68] 

Rice Panicle Field Rice 2,193 Original 9 960×540 [69] 

Lwdcd2020 Field Wheat 

spike 

12,000 10 128×128 [70] 

Pest Dataset Field Maize 7,000 1 416 × 416 [71] 

Corn Laboratory and 

field 

Corn 1,255 4 512x512 [72] 

Plantdoc Field Multiple 

plants 

8,629 27 512 × 512 [73] 

Black Gram Laboratory and 

field 

Black gram 1,000 5 512 × 512 [74] 

 

3.6 Multi-Modal Fusion Models 

Multimodal fusion, as demonstrated by [54] involves integrating different types of data or 

features from multiple sources to enhance the reliability and accuracy of disease detection. As [75] 

illustrates, advanced frameworks for detecting plant leaf diseases have achieved considerable success 

in early diagnosis. Researchers are developing and refining various fusion methods for automated 

disease classification, including Feature Fusion and deep learning methods. 

 

3.7 Feature Fusion 

Feature fusion is a machine learning and computer vision technique that enhances classification 

tasks by combining features from different sources or models. [76] introduced C-DenseNet, an 

enhancement of DenseNet architecture. C-DenseNet’t incorporates the block attention module into 

DenseNet, which uses attention mechanisms to refine feature extraction by focusing on essential 

regions and channels. This fusion enhances DenseNet's ability to capture and emphasize critical 

features relevant to crop disease detection. For example, as shown in the works of [77] C-DenseNet, it 
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can potentially identify subtle disease symptoms more effectively by focusing on key features in plant 

images.  

Ref [78] developed the XDNet model, which combined Xception and DenseNet architectures. 

DenseNet’s dense connections ensure efficient gradient flow, feature reuse, and depthwise separable 

convolutions by Xception to reduce computational cost and model size without sacrificing accuracy. 

XDNet’s approach to fusing these architectures leverages DenseNet's feature extraction strengths, as 

[79] demonstrated. Combined with Xception's efficient processing capabilities, this fusion makes 

XDNet well-suited for high-accuracy applications, such as identifying apple leaf diseases. The 

combination enables XDNet to handle diverse disease patterns with high precision. 

 

Red [80] explored an improved version of SqueezeNet using the PlantVillage dataset. 

SqueezeNet’s design focused on minimizing the variables while maintaining competitive accuracy, 

achieved through its fire modules that combine convolutions and pooling operations. By enhancing 

SqueezeNet parameters, the authors demonstrated the feasibility of using lightweight models for plant 

disease detection, where efficiency and accuracy are crucial. [50] incorporated a coordinate attention 

mechanism into MobileNet to boost the model's performance while reducing its parameter count. 

MobileNetV2, known for its efficient depthwise separable convolutions, was further improved with 

coordinate attention, which allowed the model to focus on spatially significant regions. This 

combination helped MobileNetV2 to better capture disease-related features in plant images. [81] 

proposed an improved VGG16 grape disease detection model incorporating transfer learning. The 

VGG16 architecture, known for its deep convolutional layers, was optimized for mobile devices using 

transfer learning techniques. This fusion allowed the system to process images captured via mobile 

phones and provided real-time disease identification. The improved VGG16 model’s combination of 

deep convolutional features with transfer learning enhanced its ability to detect grape leaf diseases 

accurately and efficiently. 

 

3.8 Deep Learning Methods 

A multi-modal approach through machine learning techniques leverages the complementary 

strengths of different data sources, integrating information from various modalities to create a more 

robust and informative representation. [69] implemented a novel fusion framework that integrated 

various feature types, including hue moments, Haralick textures, and color histograms. This approach 

demonstrated how diverse image data can be combined into a cohesive framework, which was then 

applied to decision trees and random forest classifiers. The fusion of these multiple modalities, as 

shown in the works of  [82] allowed the model to capture a richer set of features, contributing to 

improved performance in plant disease detection. Other researchers, like [13] have employed various 

data preprocessing methods to develop high-performance models. These methods include filtering, 

edge-based segmentation, and color conversion. Features such as shape, size, and color are extracted 

from images using these techniques and then analyzed with machine learning algorithms. Specifically, 

SIFT and Johnson's SB were used for feature extraction, which were input into multi-class SVM 

classifiers. Shamasneh and [51] incorporated dimensionality reduction, feature extraction, 

preprocessing, and classification. Using an SVM classifier, they applied the conformable polynomial 

Poisson approach for texture features and achieved 98.80% accuracy in detecting tomato leaf diseases 

from the PlantVillage dataset. 

DL frameworks have extensively been applied in analyzing plant diseases, focusing on 

multimodal integration of various architectures and techniques. [83] employed a DL on MobileNetV2, 

a lightweight model, for classifying tomato leaf diseases. Their framework involved fine-tuning 

MobileNetV2 to adapt it for this task. Similarly, [84] showed how combined with deep learning 

architectures and fine-tuning pre-trained models for particular tasks can improve performance using 

transfer learning. [85] implemented a CNN-built framework for diagnosing leaf tomato diseases. Their 

architecture was designed to handle the complexities of disease identification by leveraging deep CNN 

features. This framework integrated various layers of CNN to process and classify disease images, 

demonstrating the application of deep learning in extracting relevant features and making precise 
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classifications. [86] illustrated a multimodal framework combining inception networks with dilated 

convolutions to identify plant diseases. This approach highlighted how integrating inception modules 

with dilated convolutions can enhance the capacity of the model to depict complex disease trends 

across several crops. 

Similarly, [87] utilized a CNN leaf disease identification approach. Their framework replaced 

regular convolutions with depthwise separable convolutions to reduce computational costs and 

parameters while improving model robustness and generalizability. This approach demonstrated how 

augmenting data enhances the capabilities of DL models in handling diverse disease challenges. [88] 

employed a pre-trained ResNet-50 model, fine-tuning it for classifying multiple leaf disease classes. 

This framework integrated the strengths of ResNet’s residual connections with transfer learning to 

refine the model’s performance in disease detection. Researchers have explored hybrid models 

combining various ML and DL methods to enhance classification effectiveness. Deep learning 

techniques have lately been used in research because of their outstanding feature learning power. With 

their multiple hidden layers, as [89] demonstrated, deep learning models are particularly adept at 

extracting and selecting discriminatory features from data. Regarding network architectures, VGG and 

ResNet are frequently employed in combination with advanced techniques. [90] illustrated this by 

replacing depth-separable convolution with conventional convolution, reducing computation cost and 

parameter count. 

They also employed deep residual networks to tackle gradient disappearance issues, utilizing the 

layer-skipping structure to enhance performance. This approach allowed the model to effectively 

manage deeper architectures and capture detailed features, overcoming the limitations of traditional 

models like VGG16. Residual connections preserved performance without significantly increasing 

computational time, making deep residual networks crucial for recognition tasks and effective in 

complex feature extraction, fault-tolerant control, and defect detection. [91] combining machine 

learning and deep learning techniques—such as NasNet and MobileNet with logistic regression for 

feature extraction—offered slightly better performance than traditional ML or DL methods alone.  

Dilated CNN mechanisms have also gained attention due to their effective and rapid feature learning 

capabilities. These models enhance the ability to capture features at multiple scales, contributing to 

more accurate disease detection. Conversely, a Lightweight Attention-Based CNN approach by Ulutaş 

and [92] achieved a high accuracy of 99.60 % for grouping nine forms of tomato leaf diseases. Still, 

this approach had a higher temporal complexity than traditional techniques. Table 3. shows a 

comparative analysis of multimodal methods.  

Table 3. Comparative Analysis of Multimodal Methods. 

Plant Diseases Features Extracted Classifier Accuracy Studies 

Tomato Leaf Diseases Hue moments, Haralick textures, 

color histograms 

Decision Trees, 

Random Forest 

Not 

specified 

[69] 

Various Plant 

Diseases 

Image features, various spectral 

data 

EfficientNet 98.85% [93] 

Various Plant 

Diseases 

Deep features from images DenseNet-121 99.81% [94] 

Various Plant 

Diseases 

Image features EfficientNetV2L 99.60% [92] 

Apple Plant Diseases Deep features from images EfficientNet, DenseNet Not 

specified 

[95] 

Tomato Leaf Diseases Image preprocessing features CNN 94.96% [45] 

Maize Leaf Diseases Hyperparameters, texture features CNN 97% [96] 

Maize Leaf Diseases Color and shape features CD-MobilenetV3 98.23% [97] 

Various Plant 

Diseases 

Deep features DCNN 99.96% [84] 
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Wheat Diseases Shape, color, and texture features Various 98.65% [98] 

Rice Diseases Mean, standard deviation of 

lesions 

Various Not 

specified 

[99] 

 

4. Result and Discussion 

This This review highlights the advancements and challenges in plant disease detection using 

deep learning and traditional machine learning approaches. The integration of both techniques offers 

several benefits, particularly in scenarios with varying data availability and computational resources. 

Deep learning models, particularly convolutional neural networks (CNNs), have shown remarkable 

success in plant disease detection due to their ability to automatically extract relevant features from 

raw image data. These models have demonstrated high accuracy across multiple studies, especially 

when large datasets are available. The ability of deep learning to capture intricate patterns such as 

color, texture, and lesion distribution makes it highly effective in diverse agricultural conditions. 

However, the review also indicates that these models require significant computational resources and 

large labeled datasets, which may not be feasible in resource-constrained environments. 

Traditional machine learning methods, including support vector machines (SVM) and k-nearest 

neighbors (KNN), are commonly used in smaller datasets due to their lower computational 

requirements. However, they rely heavily on predefined features such as color and shape, which can 

limit their ability to generalize to new, unseen data. These methods often struggle with the variability 

in plant diseases and environmental conditions, resulting in reduced detection accuracy compared to 

deep learning models. Several studies reviewed suggest that combining deep feature extraction with 

traditional machine learning classifiers can be a viable solution in constrained settings. By leveraging 

the feature extraction capabilities of deep learning while utilizing traditional classifiers, this hybrid 

approach can mitigate the generalization challenges faced by smaller datasets. The review highlights 

examples where traditional models, enhanced by deep feature extraction, achieved improved 

performance in detecting plant diseases, offering a balanced approach for environments with limited 

resources. The review also emphasizes the emerging trend of using multimodal approaches that 

integrate image data with external factors such as environmental conditions. Studies indicate that 

incorporating additional data streams, such as temperature, humidity, or soil conditions, improves the 

robustness of disease detection models, particularly in complex agricultural environments. This 

suggests a promising avenue for future research to develop more adaptive and scalable solutions. 

Despite the advancements, several limitations remain. Deep learning models require extensive 

computational power and large datasets, while traditional methods are limited by their reliance on 

manual feature extraction. There is still a need for scalable, efficient solutions that can operate in 

resource-constrained environments. Future research should explore more sophisticated hybrid models 

and multimodal techniques to enhance the adaptability and accuracy of disease detection systems 

across diverse agricultural conditions. 

5. Conclusion 

The integration of deep learning models with traditional machine learning approaches offers a 

powerful solution for plant disease detection, especially in resource-constrained environments. Deep 

learning models excel in extracting complex features from large datasets, providing superior accuracy 

in identifying plant diseases. However, traditional machine learning methods, when enhanced by deep 

feature extraction, remain valuable for small datasets, offering practical, cost-effective solutions in 

environments with limited computational resources. By combining the strengths of both approaches, 

greater adaptability to disease variability and environmental conditions can be achieved, leading to 

more robust, scalable, and efficient disease detection systems. Furthermore, the incorporation of 

multimodal techniques holds promise for further enhancing the accuracy and generalizability of plant 

disease detection models, providing a pathway toward improved agricultural productivity and 

sustainable plant health management. 
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